Learn Ruby on Rails
For
Web Development

By: John Elder
Codemy.com

John Elder

Learn Ruby on Rails For Web Development

By: John Elder

Published By Codemy.com
Chicago, IL USA

ISBN
978-0-692-36421-5

First Edition

Copyright © John Elder and Codemy.com
http://www.Codemy.com

Codemy.com

TABLE OF CONTENTS
ABOUT THE AUTHORueeiistctcteniiinnssesesnssissens 7
INTRODUCTION ...cuuiiiiieennniinesetnnisnssscess ssssssssssssssssss 8
What Is Ruby On Railsccccoiiiiiiiiiiiiiciciicccicccces 9
Who This BOOK IS FOT ..o 9
Do You Need to learn RUDY?cccoooiiiiiiiniiiiniiiiiiccieescceeeecee 10
What We'll Be MaKingccooueiiniiiiiiiiniiiiicciiecccceeeseecee e 10
Follow-Along VIdeOoscccccceviiuiiiiiiiiiiiiiiiciciceseeiie e 11
Conventions Used In The BoOKcccccoiiiiiiiiiiiic, 12
CHAPTER ONE ...eeeeeeereretererereteretesetetesstessss s s sesesesesesesesssesesssssesssessssssssssssnes 14
Development Environmentcccoocouiiiiiiiinccee 14
Installing Windows/Mac/Linux vs Virtual Environmentcccccccceeeveeeanee 15
Rails And Ruby Versions ... 19
Unix Command Line Commands ..o 20
Creating Our First App (Virtual vs Mac/Linux) ..o, 23
RailSs SETVETcviiiiiiiiii e 23
MVC EXPlainedcooviiiiiiiiiiiiieccct e 26
Gems And The Gemifileccccouiiiiiiiininiiiiii e 27
Adding Pages To YOUT APP oottt 31
Creating An Index Page ..o 31
Changing Routes To Index Page ... 36
Get VS ROOt ... 38
Version Control With Github And Bitbucket ..., 38
Installing Gitcoooeeiiiiniic 40
Rolling Back Code ...t 42
Using BitBucketcoooiii 43
Using Github ..., 47
Hosting Our App On Heroku ... 50
Setting Up Heroku ... 52
Pushing Code To Heroku ... 54
Solving Problems via Google Search ..., 57

John Elder

StaCKOVETTIOW ..ot 57
COdEMY.COM ...t 58
CHAPTER TWO ..utetetetetetntntntstststsssens 59
Building Out Our Sample APP ...cccoveivivininiiiiriiiiercece e 59
Adding More Pagesccccoeuiiviiniiiiiniiiiiciieeeccceeeeee e 59
Adding Pages To The Controllerccooecevniveniniiiniicniiiiiecenee, 62
Adding ROULEScoeiiiiiiiiiiiciciiicccec e 63
Creating Links With Embedded Ruby ..., 65

Rake ROULEScccoovviiiiiiiiiicccc 67
Partialscccooviiiiiii 69
Rendering Partials ... 70
Understanding layouts/application.html.erb ... 71
CHAPTER THREE ..o sesesesessssssssssssssssssssssssseseses 75
Adding BOOSIIapccoucuiiiiiiiiiiiicincccc e 75
Wrapping Your Site In A Container Classcccovvviiniinininnnee. 81
Styling ThINgSsccovviiiiiiiiiiiciic 82
Adding A Jumbotron ... 83

Adding Buttons ..o 84

Adding A Navbar To The Headercccoooonvnvniiiiiininnne. 87

Customizing BoOtStrapccooveviviiiiiiiicccc 90
CHAPTER FOUR ...iiiiiiiiieeseseseessesisesses 95
Adding Users With DevViseccooiiiiiiiiininiiceecves 95
Adding Flash MeSSagesccviviiiiieccniiiniinecccccns 100
Generating VIEWS ..ottt 102
Generating USETS ..ot 103
Working With Databases In Railsccccoooiiiiiiiiiiniiiiiinnes 103
Development DB vs Production DBcccooiiinnni, 105

Adding Postgres Changes To Gemfile For Heroku 106

Pushing Migrations To Postgres And Heroku 108

Viewing Devise VIEWSccoeininiiiniiciiciiecece e 109
Styling Devise VIEWScccviiiiiiiiiiiiiiicccc s 111

Codemy.com

Bootstrap FOrms ..o, 113

Bootstrap Panels ... 115

Adding Links To Devise Pagesccccoeveeiviiiicininninicinicnicine, 118
Determining If User Is Logged In/Outccccccoouviviniiiiiniinnne. 118

CHAPTER FIVE et se s s s s s s sssesesesesasesnses 122
Building A Scaffold ... e 122
Database Data TYPeSccccceceviriiiniiiniiiiiiiciccecccce e 123

Rake DB:MIGTratec.cccuviviiniiiiiiiciniciiniceseceere e 123
Delete Scaffold CSS File ..o, 124
Scaffold VIEWSc.cciiiiiiiiiiiiiiccc s 125
CRUD .ottt s s s s sa st st 128
Scaffold CONtIOIIETc.cviiiiiiiiiii s 129
Added Table To Database ..o 132

Pins INdex Page ..o 134
CHAPTER SIX c.ueeteeereerererererenererereresenenenesssssssesssesssesesesesssssssesssssesssessssssssssssssssssseses 139
AUthoTizing USETScovuiiiiiiiiiiiiiii s 139

Rails ASSOCIAtIONScueviviiiiiiiiiiiicic e 139
Creating ASSOCIAtIONScceueuiiiieiiiiicicii s 141

Must Be Signed In To Crate Pins ..., 143
SUMMING UP vttt 150
CHAPTER SEVEN ...uiiiiiiiiiiiiiiissssesesesesesssssesesssessssssssssssssssssssssssssssssssssses 151
Uploading Images To Our App With Paperclip ..o, 151
Installing ImageMagickccovinniiiiiiiiiiic e 152
Installing Paperclipccccocoeveviiiiiiiiiictcc 153
Changing Our Web Forms To Allow Imagesccccocevneiinniniiiiiiinnnns 156
Updating Pins Index And Show Page To Show Imagescccccevevnnnnee. 158
Saving Images To S3 To Appear On Heroku ..o, 161
Create S3 Bucket ..o 165
Generate Amazon AWS Secret Keys ..., 166
Adding Bucket And Secret Keys To Heroku ..., 169

John Elder

CHAPTER EIGHT ...ttt ssssssssesesssssssssssssssssssssss snsnens 171
Styling With JQuery Masonry And Adding Paginationc.ccccceueecnes 171
Updating Pins Index Page Layoutccocceoviiininiiiniinniiiiciciciiccce 171
Making Pins Images Clickablecccoceoeniiiiiiiiniiiiiniicccccieee 173
Installing Masonry And Turbolinksccccccoiiiniiiniinniiicce, 174

Adding CoffeeScript ..o 177
Updating Pins CSS Stylesheetc.ccoceveviiiviniiiincicniiiiiecnicicane, 178
Updating Pins Index For Masonryccccecccccvevennicincccnnnccinnenne. 179
Adding Panels To Pins Index Pageccococecunenniinicninicinneceee 181
Tweaking Pins Show Page ... 183
Making Site Mobile Friendlyccooooiiniiiiiiiiiiicce, 185
Re0rdering PINSccccecevieiiiiiiiniiiicicieeccce e 186
Adding Pagination ...t 188
Making The Pins Index Page Our Main Homepage ..., 193
Adding User Names ..o s 194
Generating User Migrationccoviivninniiniciiiccc s 194
Updating Web Forms To Ask For Namesccccccoeuiiiiniincnne. 196
Updating Controllers To Accept Names From Forms 197

CHAPTER NINE ...ttt sssssesessssssssssssssssssssssssssssssssns 201
Tweaking The Look And Feel And Finishing Up ..., 201
Customizing Boostraply.csS.5CSS ... 203
Adding URL's To Your Heroku Appcccooeeiiinininiiciicecce, 204
Adding SUb-DOmaiNSccccoeiiiiiiiiiiiicic 204
Adding Full DOMaINSccccooviiiiiiiiieieicicc v 205

CHAPTER TEN ..ottt sesss 207
CONCIUSION ... s 207

APPENDIX A .ottt sssssssss s ssssssssssssssssssssssssssssnsssssssnans 209
Special Codemy.com Discount Offer ..o 209
$22 Off Membershipccccuiiiiniiiiiniiccccce s 210

Codemy.com

ABOUT THE AUTHOR

John Elder is a Web Developer, Entrepreneur, and Author living in Chicago, IL.
He created one of the earliest online advertising networks in the late nineties and
sold it to publicly traded WebQuest International Inc at the height of the first dot-
com boom.

He went on to develop one of the Internet's first Search Engine Optimization tools,
the Submission-Spider that was used by over three million individuals, small
businesses, and governments in over forty-two countries.

These days John does freelance web development work, writes about
Programming, Growth Hacking, and Internet Advertising, and runs Codemy.com
the online school that teaches coding, Internet Marketing, and entrepreneurship to
thousands of students.

John graduated with honors from Washington University in St. Louis with a
degree in Economics. He can be reached at john@codemy.com

John Elder

INTRODUCTION

"Rails? What a bloated waste of time...I'll NEVER use it for anything...ever."

That was really the first thought I had about Rails when I first looked into using it
almost a decade ago. I'm an old school PHP guy who always built websites by
simply punching out HTML and PHP onto Windows Notepad by hand, saving the
tile and uploading it to my regular apache web server using basic FIP software.

Compared to that, Rails seemed like a massive and unnecessary sort of thing. Who
needs a whole big framework just to build a simple website?

And talk about complicated! The first time I tried to install Rails, I gave up in
complete frustration after about an hour and a half.

Compared to hand-coding some HTML and PHP on notepad and then FTP'ing it
up to my server, this Rails thing seemed borderline insane! In fact, it wasn't till
recently that I even bothered to check out Rails again, and I'm glad I did because
once you get past the insanity that is Rails installation...Rails is a dream to use!

It's just...fun!

You can do so much with Rails, so quickly, that it makes anything else seem crazy
by comparison...even basic PHP.

It's true, there's a bit of a learning curve...in fact, it's unnecessarily hard to get
started using Rails in the beginning unless you have someone to guide you
through it (that's where this book comes into play). But once you get past a few
initial rough patches, Rails is really quite easy...and I've been there so I can ease
you through those initial bumps along the way.

In fact, I think you'll be surprised just how quickly you'll be building apps...

Codemy.com

SO WHAT EXACTLY IS RUBY ON RAILS?

Ruby on Rails is an open source web development framework written in the Ruby
programming language that makes creating apps and websites incredibly easy.

It uses something called a model/view/controller architecture that does a lot of the
dirty work of dealing with databases and things like that for you, allowing you to
focus on what's important to develop your app with speed and ease.

It was created by David Heinemeier Hansson back around 2004 - 2005 ish and
quickly became one of the most popular app frameworks in the world. Many
popular sites wuse it, including Groupon, Indiegogo, Airbnb, Yammer,
SoundCloud, Scribd, Shopify, Hulu and many many others. Twitter was initially
developed using Rails. Yep.

WHO IS THIS BOOK FOR?

This book is for the absolute Rails beginner. You don't need to have any prior
experience with Rails whatsoever. It'll be helpful if you have some web
development experience of some sort (a basic understanding of HTML is a plus,
Javascript is a plus too) but you certainly don't need to know anything at all to get
started with this book.

I'll walk you through absolutely everything you need to know step by step.

John Elder

DO YOU NEED TO LEARN THE RUBY PROGRAMMING LANGUAGE?

The first thing that most people tend to ask me is whether or not you need to learn
the Ruby programming language to use Rails. Though it is called Ruby on Rails,
you don't really need to know Ruby to start using Rails to develop web apps.

We'll be using some simple embedded Ruby along the way (embedded Ruby is
just Ruby that's used on a web page...embedded on a web page), but it'll be very
basic Ruby and I'll walk you through: it.

If you have any experience with other programming languages, you'll be able to
pick up Ruby pretty easily. There are lots of free resources online that will teach
you the basics. In fact, I'm finishing up a book on basic Ruby at the moment that
you can check out if you're interested in learning more.

WHAT WILL WE MAKE IN THIS BOOK?

No one wants to read boring dry instructions. That's a fairly terrible way to learn
anything! Instead we'll spend most of this book actually building an app from
start to finish.

In this case, we'll be building a clone of Pinterest. Why Pinterest? Lots of reasons,
really. Pinterest is one of the most popular websites on the Internet, it'll allow us
cover a broad range of topics that you'll be able to use forever in whatever
app/website that you work on in the future. It'll teach us how to create users, log
them in and out of our app, allow them to upload text and images to a database,
and then stylize all that stuff onto a webpage using some neat effects.

Plus, I think you'll discover that building Pinterest is pretty easy! Hopefully that
realization will give you the confidence to strike out and build your own cool stuff.

10

Codemy.com

If a site like Pinterest is this easy to create, well, you can probably build just about
anything!

HOW DO YOU LEARN?

Some people learn best by reading, others learn by watching or listening...still
others learn by using their hands and actually do-ing things. It's my goal to tick as
many of those boxes as possible to give you the tools you need to really learn Rails
quickly and easily in whatever method of learning works best for you.

So in addition to this book, I've also created an online video course that follows
along with the book. You can actually watch me complete each of the steps in the
book and build our clone of Pinterest right in front of your eyes.

You can ask me questions online if you get stuck along the way, and hang out with
everyone else who's enrolled in the course on the course message board.

The video course is hosted at the online code school, Codemy.com and you can
follow along and watch at your own pace.

We've got a lot of different courses besides this rails course. If you're interested in
learning Internet Marketing, Web Development, or how to build an online Startup
I highly recommend you check Codemy.com out. People are actually raving about
it, which is pretty cool!

Full Membership gets you access to all the courses for just $497, or you can sign up
for individual video courses (like this Rails course) for just $97 each.

As a thank you for reading this book, I'd like to offer you $22 off the Rails course
(get it for just $75). Just use coupon code amazon when you order from:

http://www.Codemy.com/rails/
11

http://www.codemy.com/rails/

John Elder

CONVENTIONS USED THROUGHOUT THE BOOK

This is a book about computer programming, so the layout is a little bit different
than your average work of fiction (or non-fiction for that matter).

First let's talk terminology.
I won't use a lot of weird technical terms...and if I do I'll be sure to explain them.

One thing I want to mention is my use of the term 'app'. Most people use the
phrase 'app' when talking about anything made online these days, and especially
anything created using Rails.

I tend to use the phrase 'website' instead of 'app’. I guess technically a website is
just an App...and Rails will build an "App' directory...but what can I say...I'm weird
I guess. To me a website is a website...so I tend to call them websites.

So just sort of be aware that I'll generally slip between the phrase 'app' and
‘website' interchangeably when I get excited. You should probably emulate the
cool kidz and just call them apps.

I'll be writing a lot of code in this book, and I'll usually designate that code by
displaying it in big grey boxes as per the regular convention to list code in big grey
boxes. That should make it easier to read and less jumbled with the rest of the text
of the book.

Unfortunately, Kindle books don't generally show those big grey boxes, the
formatting they use tends to strip that sort of thing out. In that case, hopefully the
code will show up in a numbered list. Each number represents a line of code, sort
of like this:

12

Codemy.com

1 <ifuser_logged_in? do %>
2 something here

3 <% else %>

4 Do something else

5 <% end %>

Everyone who signs up for my Ruby on Rails course over at Codemy.com will get
a pdf version of this book for free, and that pdf has code listed with the traditional
grey boxes which I think makes everything easier to differentiate.

Finally, we'll be using something called the "command line", sometimes called the
"terminal" extensively throughout this book (and in everyday Rails life).

If you aren't familiar with the command line, don't worry, I'll explain it in a
moment. But for now, just understand that when I write command line
commands, I'll also be writing them in the same sort of big grey boxes that I
display code in.

Normally a rails app will be deep in a unix-style directory, like this:
/home/ubuntu/workspace/your_rails_app/

And the command line convention is to put the name of your computer/user
before that directory structure. So your command line might look something like
this:

Elder-laptop: /home/ubuntu/workspace/your_rails_app/ $
That dollar sign "$" is the command prompt.

I'm not going to type all that stuff out every time I tell you to type a command line
command. Instead I'll generally just write the dollar sign and the command, and
you should assume that command should be typed into the directory where you
Rails app is sitting. So it might look something like this:

13

John Elder

$ rake db:migrate

Which means; in the directory /home/ubuntu/workspace/your_rails_app/ type the
rake db:migrate command.

But like the grey box problem I just mentioned a second ago with our code
snippets, Kindle is going to strip out the grey box for my command line examples,
so I'll also use the numbered method like the code snippets, like so:

1 $ rake db:migrate

2

Cool?

Cool.

14

Codemy.com

CHAPTER ONE

THE DEVELOPMENT ENVIRONMENT

The first time [tried to install Rails and all the stuff that goes along with it, I gave
up in sheer frustration after more than an hour of hair-pulling exasperation.

I've been programming computers since I was seven years old. I think it's safe to
say that trying to install Rails for the first time was by far the most mind-numbing,
unclear, obscure, bottomless pit of insanity that I've ever encountered in the world
of programming.

Even today; installing Rails seems to take me over a half hour, and if I'm not
paying particularly close attention, something STILL goes wrong. It's just bizarre!
I think that's a real shame because it definitely turns away a lot of people from
learning Rails.

And it's all so...un-necessary!

First things first, in a traditional Rails installation, the type of computer operating
system you're running will determine how you install Rails (and Ruby too...don't
forget about Ruby - it needs to be installed as well!).

Basically we're looking at three options here. Either you're running a Windows
machine of some sort, a Mac, or some flavor of Linux.

Traditionally, Rails developers tend to use Macs or Linux operating systems
because those both have command line terminals built right in and both run on a
traditional Unix directory structure.

There's a Windows version of Rails that you can install if you're determined to use
a Windows PC but that's a whole can of insanity that I'm not willing to open, let
alone swallow.

15

John Elder

If you simply must use a Windows PC as your development tool of choice, don't
use the Windows version of Rails. Instead, I highly suggest that you download the
free VirtualBox software from Oracle (https://www.virtualbox.org/) and install a
Linux virtual machine on your computer. I suggest you choose Ubuntu for your
Linux OS (it's free, really popular, and fun to use).

BUT!! We aren't going to go the traditional route in this book! We aren't going to
install Rails at all! You my friend, are living in a golden age where development
environments can be run IN THE CLOUD!

So it doesn't matter if you're running a Windows PC, a Mac, or a Linux box...we'll
all log into a virtual environment way up there in the magic cloud that has
everything we need pre-installed and just waiting for us to play with.

There are a lot of cloud development companies to choose from, most of them
offer free tiers that are more than powerful enough for our purposes (most allow
free environments for single developers - you usually just have to pay for multi-
user accounts when you have lots of team members that need to access the thing
all at once).

A couple popular choices are:

http://nitrous.io
http://c9.io

For this book we're going to use http://c9.io
So head over there and sign up for a free account. Just enter your email address
and pick a password, then verify your email address by clicking the link in the

email that they auto-send you and you're good to go.

When you log into your account you'll see your user dashboard:

16

https://www.virtualbox.org/

Codemy.com

<>

L codemy Signoul Help

LI
ﬁ Your Account

pinterested
CREATE NEW WORKSPACE B s A S T P TS a e
| " START EDITING Delete
¥ MY PROJECTS
pinterested > Workspace administrator codemy
it Created December 31, 2014
codemy started this workspace
" SHARED WITHME Workspace description nutes ago

» RECENTLY VISITED Workspace description (max 450 characters)

Team members (1)

©

(C9.io0 Dashboard)

Up at the top left-hand corner of the screen; click the button that says "Create New
Workspace". A Workspace is what c9.io calls the development environment. You'll
create a new workspace for every Rails App that you build. Since we're just
building one app in this book, we just need one workspace.

From the box that pops up, name your new Rails app, let's call ours: pinterested.
Type that into the field that asks for the name, click the "Ruby on Rails" icon to
designate that this will be a ruby app, and then click the "Create" button.

That's all there is to it! In a few moments (sometimes up to a minute), your Rails
development environment will be ready to go!

One of the nice things about these cloud environments is that you can access them
from anywhere, on any computer that has a web browser and an Internet
connection. It doesn't matter if you're on a Windows, a Mac, or a Linux machine.
And it will always be exactly how you left it.

I guess there's nothing left to do but fire up our new dev environment and see
what's what!

17

John Elder

Cloud9 File Edit Find View Goto Run Tools Window Help Preview (3 Run Project - Share Q

v i pinterested E READMEmd x +

> i app

» i bin

» | config

> im db

» il lib

» il log

» i public @ Melcome to your Rails project on Cloud9 IDE!

i test

> i tmp

» i vendor
B configu

Workspace

To get started, just do the following:

1. Run the project with the "Run Project” button in the menu bar on top of the IDE.
2. Preview your new app by clicking on the URL that appears in the Run panel below (https://pinterested-codemy.c9.io/).

B Gorfic e’ Ciouas T +ean
B Gemfilelod
B Rakefile

B README.md
B README.rdoc

Support & Documentation

Vvisit http://docs.c9.io for support, or to learn more about using Cloudd IDE.
To watch some training videos, visit http://www.youtube.com/user/c3ide

codemy@pinterested

(C9.i0 Development Environment)

So let's take a quick look at what we've got here. Basically there are three sections.
The section on the left sidebar is a list of directories and files that come with Rails.
These are the standard directories and files that come with ALL Rails installations.

There's a lot of stuff there and it might seem overwhelming at first. That's OK! I'm
going to break it all down and explain what's important for us to know about, and
what we can ignore for later (and what we can ignore forever).

The next section is the sort of lower middle section.

That's the command line. Some people call it the terminal (if you're on a Mac or
Linux and not using a cloud development environment, you'll use an actual
terminal that will look and act similar to this one). The terminal, or command line
(I tend to use each of those terms interchangeably), is where we'll type in
commands to do a lot of different things along the way.

18

Codemy.com

The section right above that, which should have some sort of readme document
open the first time, is basically the text editor. It allows us to open files, edit files,
and save files. We'll be spending a big chunk of our time using the text editor.

You can close that readme file and any other welcome page type files that are
open. Just click the little X at the top of each file in the text editor.

To open one of the files from the directory tree on the left hand side of the screen,
just double click it and it should open in the text editor.

WHAT VERSION OF RAILS AND RUBY ARE WE USING?

Normally if we were running our development environment on a Mac, Linux, or
Windows PC, you would usually need to update the version of both Ruby and
Rails on your system. We don't really need to worry about that in this case
because we're working on a cloud development environment and usually they
keep these things fairly up to date.

But I might as well show you how to check and see which version of both Ruby
and Rails we're currently running. It may be the case in the future when you need
to run specific versions of Ruby or Rails or something else, so being able to figure
out what version you're running is important. It also let's gain a little familiarity
with the terminal.

So head down to the terminal and type in:

1 $rails -v

2

It should output something like:

19

John Elder

1 $rails-v
2 Rails4.1.6
3

So that means that we are currently running Rails version 4.1.6. That's ok. As of
the writing of this book, there's a newer version of Rails out; 4.2.0 but we don't
really need to update.

Next go ahead and check the version of Ruby that we're currently running. Can
you guess what command we'll need to type in? Shockingly enough, it's:

1 $ruby-v
2

And that should output something like this:

1 $ruby-v
2 ruby 2.1.4p265
3

Which means that we're running Ruby version 2.1.4p265. Likewise, that's a new
enough version of Ruby to suit our purposes.

COMMON TERMINAL COMMANDS

So that's how the terminal works; you just enter commands and hit enter and the
command gets executed, and then there's usually some sort of output that you can
see. The terminal is actually a pretty powerful device and you can do a ton of
things with it.

20

Codemy.com

Of courses, in this book we won't be diving too deep into the wonderful world of
command line goodness, but it's probably helpful to go over a few common
commands that we might come across as we go along. So let's take a quick look at
some common command line commands.

1 $pwd
2

The pwd command shows us what directory we're currently in. When I type it
into my terminal, I get this:

1 $pwd
2 /home/ubuntu/workspace
3

That means that we are currently in the home/ubuntu/workspace directory. The
workspace directory contains all of the files and directories that we see listed over
there on the left hand side of the screen. In fact, we can see exactly what files are
included in that directory (or any directory for that matter) by entering the Is
command:

1 $ls
2

That will output something that looks like this:

1 $ls

2 Gemfile Gemfilelock README.md README.rdoc Rakefile app/ bin/
3 config/ config.ru db/ lib/ log/ public/ spring/ test/ tmp/ vendor/

4

21

John Elder
The things with slashes next to them (' /') are directories, the rest are files.

We can navigate to those directories by using the cd command. cd stands for
"change directory" and looks like this:

1 $ cd public/
2

That will move us into the public directory. Running the pwd command will now
show us:

1 $pwd
2 /home/ubuntu/workspace/public
3

To move back to our workspace directory, we can issue this command:

1 $cd../
2

Which basically says "move backwards one level"...and now we find ourselves
back in the workspace directory.

Here's a fun fact tip about the cd command...you don't have to actually type out
the entire command. Usually you can just start to type in out and then hit your
'tab' key on the keyboard and the terminal will autocorrect fill in the rest of the
thing. So if you type in cd pu and then hit tab, it will fill the rest in (cd public/)
and then you can just hit enter.

22

Codemy.com

That might not seem like such a big deal, but sometimes you can end up typing a
long bunch of words into the command line, using that tab trick really helps!

CREATING YOUR FIRST RAILS PROJECT

Normally if we weren't running a virtual development environment, we'd have to
generate our new rails project. You'd do that by navigating to the directory where
you'd like to create your app (in our case it would be the 'workspace' directory)
and then enter this command:

1 $ rails new pinterested
2

That command would generate a new project called pinterested and place it into
the workspaces directory. Fortunately we don't have to do that in this case
because we're working on a virtual development environment and ¢9.io spins up
our new project when we first create it on the c9.io dashboard.

So we're already good to go. Those new project files have already been generated;
in fact, those are the files that you see listed in the directory tree on the left hand
side of your screen, or by entering the command: Is in the command line.

FIRING UP OUR APP

So all of the files are there, but in order to first fire up our app we need to start up
the Rails server. Out of the box, Rails comes with a lightweight web server called
WEBTrick. It isn't really production level quality, but it works just fine in our
development environment. Normally you'd want something like Apache or

23

John Elder

Nginx for your production web server, and we'll talk about that later. For now,
we're happy to use WEBrick.

To fire up our WEBTrick server, just click that button at the very top of the screen,
right in the middle of the screen, that says 'Run Project'.

If we were working on a mac/linux/winpc, we would need to enter this command
into the terminal (in the same directory where our project is located):

1 $ rails server
2

But since we're on a cloud development environment, we can just click the Run
Project button at the top of the screen.

You'll notice that when we click that button, a new terminal box pops up. The
WEBRIck server is running in that terminal, and we can switch back and forth
between those two terminal screens. Once the web server starts running, it keeps
running in that terminal and you won't be able to do anything else in that terminal
(that's why a new terminal screen popped up).

Take a look at that terminal, you should see a line at the very top that says
something like:

1 Your code is running at https://pinterested-codemy.c9.io.
2 =>Booting WEBrick
3

..and then a whole bunch of other stuff. Give it a few moments to get up and
running and then type that URL into a new tab on your web browser (be sure to
remove the period that's oddly listed at the end of the URL).

24

https://pinterested-codemy.c9.io/

Codemy.com

That should bring up a screen that looks like this:

Browse the

n'p welcome aboa rd documentation

You're riding Ruby on Rails!

RAILS
About your application’s environment Rails Guides
Rails API
Ruby core
Getting started Ruby standard library

Here's how to get rolling:

1. Use rails generate to create your models
and controllers

To see all available options, run it without parameters.

2. Set up a root route to replace this page

You're seeing this page because you're running in
development mode and you haven't set a root route yet.

Routes are set up in config/routes.rb.

W

Configure your database

If you're not using SQLite (the default), edit
config/database.yml with your username and password.

(Default Rails Project Homepage)

Congratulations! You've officially created your very first Rails app. Sure, there's
not really much of anything there at the moment, but we can quickly change that!

Before we add more pages, I want to take a couple of minutes to explain the
architecture that Rails uses... it's called the MVC architecture.

25

John Elder

UNDERSTANDING THE MVC ARCHITECTURE

MVC stands for Model, View, Controller and it allows us to separate the different
parts of our web app and only need to focus on the things that are most important
to us. That'll make more sense in just a few moments, I promise!

So let's take a quick look at each of these things.
MODEL: the model is basically the database.

VIEW: the views are basically the web pages, think of them as the thing that
people see (or VIEW) when they go to your web site.

CONTROLLER: the controller is the thing that sits behind the scenes and 'controls'
the interaction between the web page VIEW and the database MODEL. Think of
the controller as an air flight traffic controller, telling things where to go and
generally controlling everything.

Model

(Model View Controller Diagram)

26

Codemy.com

So our rails app is made up of these three different areas, and if you browse
through that directory tree on the left hand side of the screen (specifically look in
the 'app' directory), you'll see things like views, models, and controllers. Looking
around a bit more you'll see a db directory.

We don't need to know what all of these things are or what they do just yet; we
just need to start familiarizing ourselves with the fact that those things are there,
and that they correspond to something in either the MODEL, VIEW, or
CONTROLLER part of our MCV framework.

Why is this cool?

It probably makes very little sense right now, but the MVC architecture is VERY
cool because it lets us focus on the things we really care about, like the Views (how
our website looks) and can sit back and let Rails itself (through the behind the
scenes controllers) deal with the nitty gritty nasty database stuff.

I've been programming computers since I was seven years old. But to this day
databases still give me headaches. I understand how they work, I know how to
use them, and I HAVE used them hundreds of times in the past...but I don't like
using them! I always have to look things up, I always tend to screw something up,
and generally I just have bad experiences with databases.

Rails is fantastic because I don't have to deal with any database junk...Rails does all
the heavy lifting for me! I just have to tell Rails "hey create a table with these
columns that will contain this type of data" and Rails does the rest. This will make
more sense as we move along, so you'll have to just trust me for now!

GEMFILES

Besides the MVC architecture, the other main component of Rails that you need to
be aware of, are things called Gem:s.

27

John Elder

Gems are really cool. In fact, Gems are what allows us to build really cool apps
very very quickly. Whenever you want to do something interesting or complicated
but don't want to write the code to do it yourself (which is pretty much EVERY
time — right?) you simply add a Gem.

Gems add functionality to our apps. Pretty much any functionality you'd like to
add, you can find a Gem to use.

Want users to be able to join your site, log in, log out, and update their user info?
Writing the code to do that would take a LOT of work and experience. Instead,
slap in a Gem.

Want users to be able to upload images to your site? Slap in the paperclip gem.
You get the idea.

We'll be using lots of Gems in this book and you'll get used to adding and
installing them. For right now, I just want to introduce you to the concept.

RubyGems.org is the worldwide repository of Gems. That's where you can search
for specific Gems and read the documentation for each of them. Some Gems are
well documented, some are not.

I don't know how many Gems there are, but as of today those Gems have been
downloaded 4,185,990,468 times...that's over four billion. So, yeah!

Adding Gems to your project is generally pretty easy, and I don't want you to get
hung up on this process because it'll become old hat later on. For now I'll just
outline the basic process.

Your app contains a file, called the Gemfile where you'll type in all the Gems you'll
be using. You can see the Gemfile there on the left-hand side of your development

environment towards the bottom of the list of files. Open it now by clicking it.

28

Codemy.com

Cloud9 File Edit Find View Goto Run Tools Window Help Preview & Share Q

v B pinterested &

> i app *https bygem:
> i bin
» B config ins
> imdb
» im lib
> i log
» I public
> i test
> i tmp
» i vendor
8 configu
B Gemfile
B Gemfilelock

Workspace

Ruby on Rails -

(Gemlfile)

You'll see that there are Gems listed in there already. Rails installed them
automatically when you started your project. Let's go ahead and clean that file up
a bit.

Normally we like to use comments (those lines that start with '#') because it helps
explain our code. But in this case those comments are just in the way.

So delete all the comments and straighten up the file a bit.

29

John Elder

Cloud9 Fle Edit Fnd View Goto Run Tools Window Help Preview Stop

v i pinterested AR\
> i app source ‘https://rubygems.org’
» i bin
» B config
> im db
» i lib
» i log
» im public
> B test
> i tmp
» i vendor

config.u
B Genfile
B Gemfiledock
B Rrakefile

Workspace

B ReADMEmd
B README.rdoc

Ruby on Rails -

codemy@pinteres:

(Cleaned Up Gemfile With No Comments)

So that's our Gemfile. To add a new Gem, we just type in the name of the Gem
and it's version number on a new line in the Gemfile. Then in the terminal you'll
type in the command:

1 $ bundle install
2

That will install all of the Gems that have been added since the last time you ran
the bundle install command. Generally it's a good idea to close your Rails Server
terminal and restart your rails app as well after every bundle install.

I always forget to restart my Rails server and so I usually get an error when I
reload a web page after installing a Gem. Then I smack my head and remember to
restart the server and everything works out ok.

30

Codemy.com

Some Gems only require you to add their name and version number to the
Gemfile and then run the bundle install command. Other Gems may have special
instructions that are a little more elaborate. Each Gem's documentation will tell
you how to install it specifically, and usually how to use the Gem in your app.

But we'll get into all that later. As we move throughout this book building our
Pinterested app, adding Gems will become old hat.

ADDING PAGES TO OUR WEB APPLICATION

So enough MVC theory jibber jabber, let's add some pages to our app. Head back
to our development environment and pull up the main terminal (not the one still
running the web server). Next type this command into the command prompt.

1 $ rails generate controller home index

2

So what does this line do? It tells our Rails app to add a new page called index,
and to add that page to the home directory and generate a controller for it. Typing
that command in should result in this bunch of gobbledigook:

31

John Elder

create app/controllers/home_controller.rb

route get 'home/index'

invoke
Create

1

2

3

4

5 create
6 invoke
7 create
8 invoke
9 create
10 invoke
11 create
12 invoke
13 invoke
14 create
15 invoke

16 create

So that's a whole lot of stuff! Right now, we don't really need to know what all that
stuff is. For now, just understand that we've generated a new controller, and a
new page called index that's sitting in the home directory. In fact, we can switch
over to our running app in the next browser tab and type in:

erb
app/views/home
app/views/home/index.html.erb
test_unit
test/controllers/home_controller_test.rb
helper
app/helpers/home_helper.rb
test_unit
test/helpers/home_helper_test.rb
assets
coffee
app/assets/javascripts/home.js.coffee
scss
app/assets/stylesheets/home.css.scss

https://pinterested-codemy.c9.io/home/index

Be sure to replace the 'codemy' with whatever your account name is at c9.io, and
be sure to change the pinterested to whatever you named your project (wait -
didn't you name your project pinterested? Of course you did!).

Here's what you should see if everything went according to plan:

32

Codemy.com

Home#index

Find me in app/views/home/index html.erb

(Rails initial /home/index page: https://pinterested-codemy.c9.io/home/index)

Sure, there's not much on that page yet..but how easy was it to create? Pretty
easy. Now we can edit that page and make it look however we want.

So where exactly IS that file? It's located at:

1 /home/ubuntu/workspace/app/views/home/index.html.erb
2

That's where it is located via the command line, but there's no reason for us to
navigate to that file via the command line. Instead we can just double-click
through the directory tree sitting right there on the left hand side of the screen.

Double-click the app directory to expand it, then double-click the views directory
to expand it, then double-click the home directory to expand it, and voila! You
should see the index.html.erb file sitting right there. Go ahead and double-click it
and it should fire right up in the text editor there in the middle of the screen.

33

John Elder

Cloud9 File Edit Fnd View Goto Run Tools Window Help Preview Stop

v im pinterested E indexhimlerb

v im app hl>Home#index</hl>
e Find me in app/views/home/index.html.erb</p>
» im controllers
» im helpers
» B mailers
+ I models
¥ i\ views

v i home
B indexhiml.erb
» il layouts

» B bin

» [m config

» i db

» il lib

> i log

» BE public

» i spring

» il test

» im tmp

» m vendor
) config.ru
B Genfile
B cemfilelock
B Rrakefile
. README.md bash - “"codemy-pint = Immediate ® Ruby on Rails - Ru
. README rdoc codemy@pinterested:-~ ce % I

Workspace

(Development Environment Directory Tree /app/views/home/index.html.erb)

NOTE: notice how the file ends in .erb? Most web pages tend to end in .html but
our Rails pages tend to end in .html.erb and that tells the app to allow us to use
embedded Ruby (.erb) on each web page. We'll look at embedded Ruby soon.

Take a look at our index.html.erb file in text editor (shown above):

34

Codemy.com

1 <hl>Home#index</h1>
2 <p>Find me in app/views/home/index.html.erb</p>
3

Again...there's not much there right now, but we can edit it and make it look
however we want just by editing it in the text editor right now.

So let's edit that index.html.erb file. Fire it up in the text editor and replace what's
there already with this, or whatever you like:

1 <hl>Welcome To My App</h1>
2 <p>It's Gonna Kick All Ass...</p>
Then go ahead and save it by hitting Control and S (Ctrl + S) and your keyboard,

or command S if you're running a Mac.

Now head back to that page in your web browsers and hit reload on your browser.

35

John Elder

Welcome To My App

It's Gonna Kick All Ass...

(Updated rails /home/index page: https://pinterested-codemy.c9.io/home/index)

See how easy that was? Sure there's still not much there, and we didn't really do
anything with that edit...but it's going to come quickly now!

CHANGE THE ROUTE
We've touched on MVC a little bit, now let's see a little bit of it in action. Right
now our Index page is located at https://pinterested-codemy.c9.io/home/index

But what we'd really like to see is that page shown as our main homepage at
https://pinterested-codemy.c9.i0 So how do we do that?

Easily.

36

https://pinterested-flatplanet.c9.io/home/index
https://pinterested-codemy.c9.io/

Codemy.com

All we need to do is change the routing of our project a bit (think controller in the
MVC). Take a look at /config/routes.rb

/config/routes.rb

1 Rails.application.routes.draw do
2 get home/index'

3.

4 .

5 end

Navigate to that file in the directory tree on the left side of the screen of your
development environment and double click it to open it in the text editor. You
should see a couple lines at the top of that file, and then a page full of commented
out stuff (stuff with #'s in front of it).

So what's going on here? Basically that file is telling our app to route our
index.html.erb file to home/index and that's why our index page shows up at:

https://pinterested-codemy.c9.io/home/index

In fact, in the future if we want to add more pages, we'll have to add routes to
those pages right here. They'll probably look a lot like that line (get "home/index')
only for different pages (ie get home/about' would create a route to a page at
/home/about etc).

But for now we need to modify that line to let our program know that we don't
want our index page routed to /home/index. In fact, we want to make that our
ROQOT page (ie the page at the root of our url https://pinterested-codemy.c9.io0),
Easy enough, just edit that file:

37

https://pinterested-flatplanet.c9.io/home/index
https://pinterested-flatplanet.c9.io/

John Elder

/config/routes.rb

1 Rails.application.routes.draw do
2 root 'home#index'

3.

4 .

5 end

See what we did? We changed the line get 'home/index' into the line root
'home#index'

Notice the '#' instead of a /', that's what we need to do to designate that page as a
root page. If we go ahead and save the newly edited routes.rb file and reload our
web browser at https://pinterested-codemy.c9.io/home/index we'll get an error
because the route to that page no longer exists!

Instead if we navigate to https://pinterested-codemy.c9.io we'll see our index page
right there, which is exactly what we were shooting for.

Things are moving right along! We better save our work!

VERSION CONTROL WITH GITHUB AND BITBUCKET

One of the most important things to do as a programmer is set up version control
to keep track of all the different changes you make as you develop your app. It's
generally a 'best-practices' type of thing, but it makes sense.

If you totally blow up your app (and you probably will at some point), it's nice to

be able to simply roll back to before you blew it up and proceed ahead as if
nothing happened.

38

https://pinterested-flatplanet.c9.io/home/index
https://pinterested-flatplanet.c9.io/

Codemy.com

Version control is especially useful when you're working with a bunch of people,
and they're all making changes and adding/removing things. Your version control
will keep track of who did what, and when and where.

But it's important even if you're working by yourself and don't plan on ever
working with a team of people because you're always going to screw up and need
to roll back your code. Trust me.

Most coders use something called "Git" for their version control, and then push
their code up to a third party website like Github or Bitbucket for safe keeping.

You have a choice when it comes to picking a third party site to host your code on.
Github seems to be much more popular, all the coders seem to use it. In fact, most
people use their Github account as a sort of resume piece.

Why? Because unless you pay for it, all the code you push up to Github is public.
Anyone can see it, download it, whatever. So potential employers always want to
see your Github account; so they can check out your chops.

That's fine if you're working on a lot of open source type projects, but personally
I'm usually developing proprietary apps that I'm using to make me money. I don't
want ANYONE to see that code.

So I use Bitbucket. Bitbucket gives you free private repositories, and you only
have to pay to add team members and things like that. But for individuals, you get
free private repositories. Github, on the other hand, gives you free PUBLIC
repositories and you pay to get private ones.

I think it's a good idea to have some sort of Github presence if you're looking to
turn this programming thing into a full time job. Like I said, employers will want
to see your Github page.

What I recommend you do is use Github for things like this book! As you follow
along with the code in this book (and any others you read) use Github.

39

John Elder

We're building a pinterest clone. Another book might show you to make a
shopping cart like site. Still another book might teach you to clone Twitter.

If you follow along with each of those books building what they build, at the end
you'll have three solid example projects on your Github page to show potential
employers. And then they'll hire you for hundreds of thousands of dollars a year
in salary and you can send me some of that cash every month :-p

So it just depends on what you're doing whether or not you use Github or
Bitbucket. I'll show you how to set up each of them right now.

INSTALLING GIT

Normally you'd need to install git into your development environment, but we're
using the awesome c9.io cloud environment and they've already installed git for us
and it's ready to go.

All we need to do is configure it. So let's do that now. We've got to punch in four
or five commands into our terminal command line:

$ git config --global user.name "Your Name"

$ git config --global user.email your.email@example.com
$ git config --global push.default matching

$ git config --global alias.co checkout

$ git init

N Ul = W N -

So obviously you're going to want to change line 1 to add your own name where it
says "Your Name" and just as obviously you're going to want to add your actual
email address to line to where it asks for your email address.

40

mailto:your.email@example.com

Codemy.com

Remember, Git is used to keep track of who makes what changes, so it needs to
know your name and email address.

You'll have noticed that after you entered the last command (line 5) you got a little
output printed on the screen; probably something like this:

1 $ gitinit
2 Initialized empty Git repository in /home/ubuntu/workspace/.git/
3

Basically that means that a new directory has been generated to handle all of our
version control files on our development environment, and that directory is named
.git/ You can cd into that directory in the terminal if you're curious to see what's
in there (just remember to cd ../ back to the main directory when you're done
snooping around).

So now Git is configured for our development environment, we need to add our
project files to our local repository. Once we've added them, we'll 'push' them up
to either Github or Bitbucket. Adding our project files to our local git repository is
a two-step process:

1 $gitadd.
2

That command will add all the files of our project into a sort of staging area.
Basically it says "Hey, my files are ready to go!" The period "' means "all files".
Next we need to 'commit' those files to the repository. Committing, in essence,
moves the files from the staging area into the repository.

1 $ git commit -am "initial commit"
2

41

John Elder

There's a couple of things to notice with this command. First the flag -am. That
tells git to grab all (-a) our staged files and look for a comment (technically a
'message' hence the -m flag). The comment is "initial commit". You can type
anything you want as the comment, just enclose it in either a double quote or
single quote.

Comments are important for version control because the comment/message will be
shown next to every file that has changed since the last commit. That makes it
easier to eyeball your code up on Github or Bitbucket and track down specific
changes.

So for instance, let's pretend we just added an 'about us' page to our project and
wanted to commit the changes. In that case I would have typed $ git commit -am
"added an about us page"

That's how comments/messages work in version control. Get used to typing those

two lines, followed by a third line to push the code up to github or bitbucket that
we'll look at in a minute.

ROLLING BACK CODE

So now if you make some catastrophic mistake, you can roll your code back (as
long as you haven't committed the mistaken code already). All you have to do is
punch in this command:

1 $ git checkout -f
2

And your errors will melt away.

42

Codemy.com

GITHUB OR BITBUCKET
So now and all we need to do now is decide whether or not to use Github or
Bitbucket to host our code.

GitHub.com
Bitbucket.org

Head over to one or the other of those sites and sign up for a free account.

USING BITBUCKET

Like I said, I'll show you how to use both, but since I tend to use Bitbucket myself,
we'll start with them.

After you sign up for a Bitbucket account, you'll need to add an SSH key so that
Bitbucket knows you are who you say you are when you push code from your
development environment onto your Bitbucket account.

Normally you'd have to generate a public key, but our development environment
already has one ready to go, and you can find it by punching in this command to
the terminal:

1 $ cat ~/.ssh/id_rsa.pub

2

That should output a whole bunch of gobblediegook to the screen that looks
something like this:

43

John Elder

ssh-rsa
AAAAB3NzaClyc2EAAAADAQABAAABAQDg4sk2R4EigtmQ3WLuw03EFMN/
EINGkpOQ1hj/HdQ9SI0b/SdGpxK3z9Bz75UFDPCnhjvCNrcYiARzfTN1pgBOjKEq
74ZWoVtdwcpjhkePHDnBdVz2upnrg GCWu/BAs140RhTsVIpZGtt/RsVe8OfsXsc+
lIpPKGWUAMtg4hwORni6qeY8450WRrdeQLCpx5Z]DrzSeYNtGBx50HEqAglOaB
TSS/aFewwcQe8WuXrWlrQy4C630as/+mLg YPhzjirN9eiHrKuRgj35jlv5jYoSK484h
BxxAPelia5yLf0grWG0j7hq4vyZMOQNyyKLh2LpURwzmM9b/Ur9hL7OMjGUbp
johne4196@gmail.com

That's your public SSH key. Drag your mouse over the whole lot of it to highlight
it, and then copy it by pressing Control and C (Ctrl + C) or Command C on a Mac.
Now we need to paste that into our Bitbucket account.

Log into your account and click the little avatar image at the top right corner of
your dashboard screen, then click "Manage Account”, and then click "SSH Keys".

A box should pop up where you can paste (Ctrl +V) your newly copied SSH key.
Click the "Add Key" button after you've pasted the key into the appropriate box.

44

mailto:johne4196@gmail.com

Codemy.com

Add SSH key

Label c9.io

Key' | ssh-rsa
AAAABINZAC1yc2ZEAAAADAQABAAABAQDD4sk2R4EIGIMQ3IWLUWIIEFMN/
NGKpOQ 1hjHIQISI0L/SGPXKIZIB27 SUFDPCRhVCNICYIARZIT N1 pgBojK
EQ74ZWoVtdwepihkePHDNBAVZ2UpnrgGCWU/BAS 140RNTSVIpZ GIURSVER O
fsXscHIpKGWUAMIgdhwORNIGQe Y243 0WRrdeQLCpxSZJDrzSeYNIGBxIoH
EqAgIOaBT SS/aF ewwcQeaWuXrWirQy4C620as/+mLgYPhzjirNgeiHrKuRg)3
5jlva]YaSKABANBxxAPeliayL 0grWG0ThgdvyZ MOQNyyKLh2LpURwzmIMab/

UrahL 70| GUBp johned 196@amail con .

Already have a key?
Copy your key to your clipboard

Problems adding a key?
Read our knowledge base for common issues.

Addkey — Cancel

(Bitbucket.org Add SSH key screen)

So far so good. Now we need to create a new repository on Bitbucket. Click the
"Create" link and type in the name of your app. You can generally leave the rest of
the default fields alone.

45

John Elder

= ©Bitbucket Dashboard ~ Teams~ Reposilories ~ Create

Create a new repository

You can also import a repository

Name" .
| New to Bitbucket?
Description Learn the basics of using
Git and Mercurial by
exploring the Bitbucket
101
Access level # This is a private repository
o
Forking Allow only private forks Workmg in ateam?
Create a team account to
Repository type @ Git
P yiyp consolidate your repos and
Mercurial organize your team's work
Project Issue tracking
management Wiki
Language Select language e

Repository integrations

HipChat Enable HipChat notifications

Create repository [zl

(Bitbucket.org Create Repository Screen)
Now we need to punch in a couple of commands into our terminal back at our
c9.io development environment:
1 $ git remote add origin git@bitbucket.org:<username>/pinterested.git

2 $ git push -u origin --all
3

Be sure to change the <username> field to your Bitbucket username, and change
the /pinterested.git name to whatever you actually named your app over at
Bitbucket.

Done and done.

46

mailto:git@bitbucket.org

Codemy.com

From now on, whenever you want to save your code and push it to Bitbucket,
you'll follow these three commands:

1 $gitadd.

2§ git commit -am 'enter your comment'
3 $ git push

4

We've already seen the first two command, they add your files to your local git
repository. It's the third line ($ git push) that actually pushes all that committed
code up to Bitbucket.

And now we've got version control completely set up and ready to go!

USING GITHUB

Now we'll go over the steps for using Github. Remember, don't try to use BOTH
of these services, you need to pick one or the other.

So the first thing to do is head over to Github.com and sign up for a free account.

After that you'll need to do the same basic steps we just went over for generating a
public SSH key for bitbucket:

1 $ cat ~/.ssh/id_rsa.pub
2

That should output a whole bunch of gobblediegook to the screen that looks
something like this:

47

John Elder

ssh-rsa
AAAAB3NzaClyc2EAAAADAQABAAABAQDg4sk2R4EigtmQ3WLuw03EFMN/
EINGkpOQ1hj/HdQ9SI0b/SdGpxK3z9Bz75UFDPCnhjvCNrcYiARzfTN1pgBOjKEq
74ZWoVtdwcpjhkePHDnBdVz2upnrg GCWu/BAs140RhTsVIpZGtt/RsVe8OfsXsc+
IIpPKGWUAMtg4hwORni6qeY8450WRrdeQLCpx5Z]DrzSeYNtGBx50HEqAglOaB
TSS/aFewwcQe8WuXrWirQy4C630as/+mLgYPhzjirN9eiHrKuRgj35jlv5jYoSK484h
BxxAPelia5yLf0grWG0j7hq4vyZMOQNyyKLh2LpURwzmM9b/Ur9hL7OMjGUbp
johne4196@gmail.com

That's your public SSH key. Drag your mouse over the whole lot of it to highlight
it, then copy it by pressing Control and C (Ctrl + C) or Command C on a mac. Now
we need to paste that into our Github account.

Log into your Github account and look around for a little gear icon at the top right
hand corner of the page.

Under 'User Settings' click 'SSH Keys'. In the 'Title' field, name this thing...I'd
name it c9.io pinterested or something like that. Then paste your SSH key into the
'Key' field and click the add button. You may have to confirm by entering your
Github password.

Now you can test things out to make sure everything worked the way it's
supposed to work. Pull up the terminal in our development environment and
punch in this command:

1 $ ssh-T git@github.com

2

You'll probably see something like this:

48

mailto:johne4196@gmail.com
mailto:git@github.com

Codemy.com

1 The authenticity of host 'github.com (207.97.227.239)' can't be established.
2 RSA key fingerprint is 16:27:ac:a5:76:28:2d:36:63:1b:56:4d:eb:df:a6:48.

3 Are you sure you want to continue connecting (yes/no)?
4

That's what you're supposed to see. Type in yes and hit enter. You'll probably see
this:

1 Hi username! You've successfully authenticated, but GitHub does not

2 provide shell access.

3

Success! Now we need to create a repository on Github to house your project.
Look for a plus sign ('+') up at the top right hand corner of the screen somewhere.
Click it and then click 'New Repository’. Name your repository something short

and memorable...like pinterested or something like that.

Next you need to decide whether to make your repository public or private. If
you've set up a free account, then you'll need to pick 'public'.

Don't click "Select Initialize this repository with a README." because we've
already run $ git init in our development environment.

Click 'Create Repository'.

Now head back to your terminal in our development environment and push your
code up to Github:

1 $ git push
2

49

John Elder

That should do it! Remember, whenever you want to save code and push to
Github, you'll need to do these three steps:

1 $gitadd.

2 §$ git commit -am 'your comment here'
3 $ git push

4

And that's all there is to it!

HOSTING YOUR APP ON HEROKU

So we've got version control set up and running, now we need to talk about
hosting your app. One of the great things about Ruby on Rails is Heroku, which is
basically a web hosting service for Rails apps.

Normally when you deal with web hosting, you've got to manage servers at some
level. Depending on how much horsepower you need, you might be responsible
for most of the administration of your web server, including patching and
updating the thing, all the way up to security. It can suck.

Heroku is different.

With Heroku, all you have to do is push your code up to Heroku in much the same
way that we push it to Bitbucket or Github. In fact, it's just one line on the
terminal.

Your code will get pushed to Heroku where it will be automatically installed,
configured, and whatever other magic needs to be done to turn your code into a

tully functioning website.

50

Codemy.com

Bang zoom, you're done.

You don't have to worry about running a web server, patching software, scaling
things, or security. And did I mention Heroku is free?

Yep.

Well...it's free at a basic level. They have a "Pay as you Grow" type of model.
Heroku works off something they call a 'dyno’, and you can get one dyno for each
app you upload for free. One dyno is enough horsepower to get your site up and
running, and allow a handful of people to use your app at once.

The more people that use your app at once, the more horsepower and bandwidth
you'll need. You'll need to increase the dynos for your app. That's pretty cool,
because there's nothing to it. You just log into your account and increase the
dynos.

So with the click of a button you can basically scale your website to be as powerful
as you want; to handle as much traffic as you want. So basically you only pay for
what you need, horsepower wise. That's great for new sites just getting started. As
your web app becomes more popular and more people flood to your site, you just
increase the dynos to the appropriate level.

Done and done.

It's a great resource, and fairly unique in the world of web hosting. What about
price? Right now two dynos will cost you around $35-36 bucks a month. Three
dynos will cost around $70 a month. You can check for yourself here:

https://www.heroku.com/pricing

There's a slider on that page that lets you see how much any level of dynos will
cost per month and you can do your own research there.

51

https://www.heroku.com/pricing

John Elder

There are certainly other hosting services where you can host your Rails app, but
I've never bothered to research any of them. Heroku is the industry leader.

So sign up for a free Heroku account right now, and let's configure our app for
Heroku.

Normally, if we were running our development environment on
mac/windows/linux, we'd have to download and install the Heroku toolbelt
(toolbelt.heroku.com).

But since we're using a virtual cloud development environment, we've already got
the toolbelt installed. You can check to make sure by punching in this command

into the terminal:

1 $ heroku --version
2

You should see a line output that tells you what version of the Heroku toolbelt is
installed.

Now all we have to do is log into Heroku from the terminal:

1 $ heroku login

2

You'll be prompted to enter your email address and password right there on the
command line. Go ahead and do so, using the same email address and password
that you used to sign up for Heroku.

Next we'll need to add our SSH keys. Unlike Bitbucket or Github though, we don't
have to copy and paste them into the website; we can do it from the terminal:

52

Codemy.com
1 $ heroku keys:add
2
Heroku will find your SSH key itself.
Finally, we need to create an actual app on Heroku:
1 $ heroku create

2

Heroku will output a bunch of text on the terminal screen. Take a look, see that
URL? That's the URL of our new App. Sure, we haven't pushed our code up to
Heroku yet, but when we do, that's where it will sit:

https://intense-caverns-8282.herokuapp.com

It probably looks like a fairly strange URL (they seem to autogenerate them). You
can change the URL to something easier to remember. All we have to do is enter a
simple command into the terminal.

1 $ heroku rename (pick a name like pinterested12)

2

So if you wanted to name your app pinterested 12, you would type in

1 $ heroku remane pinterested12
2

53

John Elder

I'd suggest you name it pinterested, but the name has to be unique and pinterested
has already been taken.

I renamed my app, the URL is now:
https://pinterested99.herokuapp.com

Yours will be whatever you changed your app to.

With Heroku, it's easy to wuse a custom domain name too; like
www.pinterested99.com and I'll show you how to do that towards the end of this
book. No need to put the cart before the horse, we can use the
whatever.herokuapp.com URL while we're building the thing.

PUSHING CODE TO HEROKU

Now that we have Heroku all set up, it's time to push our code up there. Pushing
code to Heroku is very similar to pushing code to Bitbucket or Github, in fact we'll
use the same three commands — and then just add a fourth for Heroku:

1 $gitadd.

2 $ git commit —am "add your comment"
3 §$git push

4 $ git push heroku master

5

The first three lines are familiar to us already; they just save your changes with git
and push up to Bitbucket (or Github if you've chosen to use them). The only

54

Codemy.com

difference is the last line: git push heroku master and that simply pushes all your
code up to Heroku.

After you run that command, you'll usually have to wait for a minute or two and
while you wait you'll see a whole bunch of gobbledigook text outputted to the
screen. That's totally normal. Rails is just doing it's thing.

Once it finishes pushing to Heroku, your app is live! You can head over to
pinterested99.herokuapp.com (or whatever URL you selected) and see your app
live.

Sure, there isn't much there yet. But it'll start to go faster now...
IMPORTANT

Before you push your code to Heroku for the first time, we need to make a quick
change to our Gemfile. Our app is currently using a lightweight database called
sqlite3 which comes installed with Rails. Heroku no longer allows that database,
so we need to change our Gemfile. Open the Gemfile and delete the line:

/Gemfile

1.

2 .

3 gem 'sqlite3'’
4 .

5

Just go ahead and remove it completely. Next add this bit of code to the bottom of
your Gemfile:

55

John Elder

/Gemfile

1 .

2

3 group :development, :test do
4 gem 'sqlite3'

5 end

6

7 group :production do

8 gem pg, '0.17.1'

9 gem 'rails_12factor’, '0.0.2'
10 end

11

If you take a look at that code, you can sort of see that it's telling our app to use the
sqlite3 database on our local development environment (and test environment, but
we won't be talking about test stuff in this book), and to use pg and rails_12factor
for the production environment (Heroku).

PG stands for Postgres, and that's the production level database we'll be using up
on Heroku (rails_12factor is something that goes with it).

After you add those changes to the Gemfile, you need to run the bundle install
command in the terminal, but slightly differently than usual:

1 $ bundle install --without production
2

That '--without production' flag tells Rails to ignore the postgres stuff.

Now you can save your work and push your code to Heroku for the first time:

56

Codemy.com

1 $gitadd.

2 §$ git commit —am "add your comment"
3 $ git push

4 $ git push heroku master

MOVING FORWARD - GETTING HELP

We're almost ready to start doing some real stuff. You'll be surprised how quickly
our app comes together.

But before we get started, I wanted to talk very briefly about errors.

They say that computer programming is 90% error fixing. Basically, you're going
to spend a little bit of time writing computer code (around 10% of your time), and
then 90% of your time fixing the screw-ups that you made in that 10% of writing
code.

That certainly seems to hold true in Rails. Lots of things can go wrong, and WILL
go wrong. There's no shame in asking for help when you get stumped with a
problem you can't solve, in fact — it's essential.

As a coder, you're going to have to get good at searching for help over at Google.
Luckily, Rails is pretty good about giving you a heads up about errors. You can
usually copy the error summary and then paste it right into Google.

Chances are, someone else had that same problem and has written down how to
solve it; either on a message board, or in a blog post, or some other way.

More often than not, when you search for help at Google, you'll come across an
answer posted on a website called StackOverflow.com

57

John Elder

StackOverflow.com is basically a social network for coders...not just Rails coders,
but ALL coders. People go there to ask questions, and answer other people's
questions.

It's a real community and I highly suggest you go check it out, sign up for a free
account, and scope out the lay of the land because you will definitely need the
support of your fellow coders along the way.

As for this book in particular, I highly recommend you sign up for the "Learning
Ruby on Rails For Web Development" course at Codemy.com

(http://Codemy.com/rails)

Not only do I walk you through every section of this book in video form, but I'm
also available to answer any questions you have along the way. Just post them
below any video where you get stuck, and I'll usually respond within an hour or
two (I'm there all the time).

The price for one course is usually $97 but I'll knock off $22 as a thank-you for
reading this book, just use coupon code amazon when you check out.

The price is kind of a joke when you compare it to the hundreds or thousands of
dollars that most online Rails courses charge, but I'm weird like that. I'm less
interested in making money and more interested in making sure you learn how to

use Rails...otherwise I'd charge $899 for the course!

Either way, get used to asking for help — everyone does (me included!).

58

Codemy.com

CHAPTER TWO

BUILDING OUT OUR SAMPLE APP

So we've got our development environment all set up, we've got version control
up and running and we're ready to deploy our app to Heroku whenever we like.
It's time to start building out our app!

In this chapter we're going to start building out pages for our app. In the next
chapter we'll begin to style the app using Bootstrap, which is a CSS framework
that's amazingly easy to use and allows you to build very good looking web sites
without any real frontend design experience.

Before we get into Bootstrap though, let's go ahead and add another page to our

app. Up until now we just have our Index page, but any app you ever build will
probably have more than one page; so how do we create more pages?

ADDING MORE PAGES TO THE APP

So let's add an "About Us" page. Most websites have an "About Us" page. Adding
a page is fairly easy; in fact it just takes three simple steps.

1. Manually create a page file in our Views directory.

2. Add the page to our Controller (we haven't really looked at the controller yet).

3. Set the page's Route in /config/routes.rb

Step one is easy, we just need to manually create a page in our Views directory.
Generally speaking, we want to add the page to the same directory (folder) where

59

John Elder

our Index page is sitting, though that isn't absolutely necessary. In our case, that
directory is /app/views/home/

To add a new page, just right click on the /app/views/home directory on the left-
hand side of your development environment, and choose "New File".

Cloud9 Fle Edit Fnd View Goto Run Tools Window Help Preview Stop

¥ [pinterested A=)

¥ i app
» I assets
» i controllers
» = helpers
» B mailers
» W models
¥ [views
v i
B
il
» [bin
* [config
» im db
» i lib
* im log
» [l public
» W spring
» E test
» | tmp Duplicate
» [vendor

Workspace

Add to Fawvorites
1 config. Open Terminal Here AleL
B Gemfil o inThis Folder Cirl-Shift-F

Mew File

New Folder int Immediate Ruby on Rails - Ru

e (master) § | |

60

Codemy.com

(Create New File — Right Click on /app/views/home/ select "New File")
A new file will appear in front of your eyes, right there in the /app/views/home
directory, and you'll need to name it. Let's call it about.html.erb

Remember, most web pages tend to end in .html but we end ours in .html.erb so
that we can use embedded Ruby on the page (and we'll see an example of that
soon).

So now our about.html.erb page exists, but there's nothing in there; so double click
it pull it up in the editor.

You might want to double click the index.html.erb file that's sitting in the same
directory too, just to jolt your memory as to what it looks like. Right now we've
only got a couple of lines in our index.html.erb file:

1 <hl>Welcome To My App</h1>
2 <p>It's Gonna Kick All Ass...</p>
3

And that's fine for now...but let's get back to our about.html.erb file. Open it in the
editor (it should be empty) and add a couple lines:

1 <hl>About Me...</h1>

2 <p>My Name Is (YOUR NAME HERE) and I'm Building a Pinterest Clone</p>
3

Type that in and then hit Control and S (Ctrl + S) to save the file; Command S on a
Mac.

So now that file exists, but our app doesn't really know it yet...so that brings us to
step two: Add the page to our Controller.

61

John Elder

ADD OUR NEW PAGE TO THE CONTROLLER

We haven't really looked at our Controller yet, but let's do so now:

lapp/controllers/home_controller.rb
1 class HomeController < ApplicationController
2 def index

3 end

4 end

5

So there really isn't much in there. This is our home controller. Why home?
Because when we first generated our index page with the command: "$ rails
generate controller home index", that command created a home controller (you can
see it right there in the command).

Basically our controller right now isn't doing much of anything except defining
that the index page exists. So let's modify it to let it know about our new About
page. Easy enough:

lapp/controllers/home_controller.rb

1 class HomeController < ApplicationController
2 defindex
3 end

4

5 def about
6 end

4

5 end

6

62

Codemy.com

We've just added two little lines, def about and end. That's all we need to do there.
Now we can move on to the third and final step, adding a route to our new page.

SET THE ROUTE FOR OUR NEW PAGE

We've fiddled with our routes.rb file earlier when we changed the route to our
index.html.erb file to make it our root route. Now we just need to add a route for
our new about page:

/config/routes.rb
1 Rails.application.routes.draw do
2 root 'home#index'

3 get 'home/about'

4 .
5
6
7

end

Basically we just added the line: get 'home/about', the rest is how we left it from
earlier when we added our index root route.

Be sure to save the file with Control and S (Ctrl + S) or Command S on a Mac (I can
stop telling you to save files now, right? Every time we make a change to a file,
just assume that you need to save it and hit Ctrl + S).

That's all there is to it, we've now successfully added an About Us Page. Fire up

your web browser and point it to /home/about to see for yourself:

https://pinterested-codemy.c9.io/home/about (or whatever your URL is)

63

John Elder

That wasn't too terribly hard, was it? That's how to add a page to your app
manually, after the fact.

You can also generate pages automatically at the very start of building your app
when you created the Index page by simply passing the names of the pages you
want to create on to your 'generate' command.

Remember, our generate command to create our index page was:

1 $ rails generate controller home index
2

That command generated the index page and the home controller. But you could
have created an about page (and any other pages you wish) at the same time like
this:

1 $ rails generate controller home index about contact faq
2

You'll notice that command is the same as the one we used to create our index
page; I just tacked on a few more page names to the end (about contact and faq).

That command will do everything for you. It'll create the pages themselves
(about.html.erb, contact.html.erb, and faq.html.erb) inside your /app/views/home/
directory.

It will also add each of those pages to your /app/controllers/home_controller.rb
Controller (Step two), and even create routes to each of those pages in your Routes
tile, /config/routes.rtb (Step Three).

You don't really want to use that command more than once. So if you started your
app by using this command: $ rails generate controller home index and then later
64

Codemy.com

wanted to add more pages, you should add them manually like I showed you how
to do at the beginning of this chapter, don't try to run the generate command again
and tack on the pages that way. It might work, but things can get weird.

ADDING LINKS TO WEB PAGES

So now that we have two pages (index and about) we should probably link them

together so that people can navigate between them.

Rails handles hyperlinks a little bit differently than regular HTML. With regular
HTML a link looks like this:

1 <ahref="about.html">About Us

2

You can still create links that way if you want, but Rails has a better way using
embedded ruby. That same link will look like this with embedded Ruby:

1 <%=link_to 'About Us', home_about_path %>

2

So let's take a look at that line of code because there are several things going on
here that we need to talk about.

First of all, notice how the tag starts and ends:

1 <%= .. %>
2

65

John Elder

Those are the opening tags and closing tags for embedded Ruby. All embedded
Ruby tags will look like that (for the most part, the exception is that some leave off
the = sign but we'll talk about that later).

Next, link_to is how Ruby tells our app we want to make a hyperlink, and the
'About Us' is the anchor text that will show up on the web page. Pretty straight
forward.

The only tricky part of this whole thing is the home_about_path bit. That needs
some explaining!

Basically we're just telling our app what route to follow. Remember when we
created our 'About’ page and added the route:

/config/routes.rb
1 Rails.application.routes.draw do
2 root homet#index'

3 get 'home/about'

4 .
5
6
7

end

get 'home/about' is telling our app that the route to our about page is home/about
and that's what we're telling our link to point towards. Instead of writing it as
home/about for the link, the convention is to user home_about_path.

The _path at the end is saying "hey, it's the path to home_about".
Make sense?
So how will we know what routes are available for links? It's easy to sort of

eyeball our /config/routes.rb file right now and see; but that's because we've only
66

Codemy.com

got two pages. As our app becomes more complicated, we'll be adding many more
pages and things can get a little hard to just eyeball.

Luckily there's a command you can enter into the terminal that will show you all
the routes:

1 $ rake routes
2

The rake routes command will show you all the routes currently available to you,
as well as how they should be formatted for the link_to tag. Let's run the
command again and look at the output:

1 $ rake routes

2 Prefix Verb URI Pattern Controller#Action
3 root GET / home#index

4 home_about GET /home/about(.:format) home#about

5

The first column shows the route you need to use for the link_to tag (you just need
to slap a _path to the end of it). Notice the home_about path.

But wait, shouldn't the index path be home_index_path? No! You'll notice when
we ran the rake routes command, it lists our Index page's route as root. That
means if we wanted to link to that page using a link_to tag, it would look like this:
1 <%=link_to 'Home', root_path %>

2

Make sense?

67

John Elder
So let's add our two links to our two pages, first let's add them to our Index page:

lapplviews/home/index.html.erb

<%= link_to 'Home', root_path %>

<%= link_to 'About Us', home_about_path %>
<h1>Welcome To My App</h1>

<p>It's Gonna Kick All Ass...</p>

Ol = W N -

Save and close. Now let's add them to our About Us Page:

lapplviews/home/about.html.erb

<%= link_to 'Home', root_path %>

<%= link_to 'About Us', home_about_path %>

<h1>About Me...</h1>

<p>My Name Is (YOUR NAME HERE) and I'm Building a Pinterest Clone</p>

O = W N =

Save, and then head over to your web browser and reload your page:

https://pinterested-codemy.c9.io (or whatever your URL is).

You should see those two links right at the top of the page. You can click on the
'‘About Us' link and it should go to your about page, where you can click on the
'Home' link and return home.

Now we're getting somewhere! It's not much functionality, but it IS functionality
and we can build on it!

68

Codemy.com

ADDING LINKS TO EACH PAGE IS TOO MUCH WORK

So we just added links to each of our web pages, but that was too much work
because we had to add them to each of our pages. Sure, we only have two pages
(index and about) but normally you'd have many more...sometimes hundreds or
even thousands more. You wouldn't want to edit each of those pages every time
you wanted to update a link, would you? Of course not.

Luckily Ruby gives us a solution called a 'Partial.

CREATING PARTIALS

A partial is basically an include file. It lets us include the contents of one file in
another. Creating partials is a two-step process.

1. First create your partial file

2. Next call the partial file from another file

Creating a partial file is done in a similar way to creating our 'About' page (but we
don't need to add a route or fiddle with the Controller). Just right click on your
/app/views/home/ folder and select "New File". There is one small difference.

When you name your new file, put an underscore in front of it. So if you wanted

to create a partial file called header.html.erb you would name that

_header.html.erb

69

John Elder

In fact, do that now. Right click on your /app/views/home/ directory folder and
create a new file called _header.html.erb

Now double click that file to open it in the text editor, and let's copy in our two
links:

lapplviews/home/_header.html.erb

1 <%= link_to 'Home', root_path %>

2 <%=link_to 'About Us', home_about_path %>
3

Save that file and close it. That's all there is to step one of creating a partial. Let's
move on to step two. To call a partial in another file, you'll use this embedded
Ruby tag:

1 <%= render 'home/header' %>
2

It's pretty straight forward. Render tells our app to render the partial, and
'home/header' tells our app where to find the partial file.

You might think that it should instead be '"home/_header.html.erb' instead of the
simpler 'home/header’, but it's not. Rails knows that by -calling render

home/header you're really asking it to display your _header.html.erb file.

So let's change our Index page to reflect this and get rid of the links we put in
earlier:

70

Codemy.com

lapplviews/home/index.html.erb

1 <%= render 'home/header' %>

2 <hl>Welcome To My App</h1>
3 <p>It's Gonna Kick All Ass...</p>
4

Save that file, then head back to your web browser and reload the page at:

https://pinterested-codemy.c9.io (or whatever your URL is)

It should look the same as it did earlier, with the two links to Home and About Us
at the top of the page. The only difference is that those links were called from our
Header partial.

You might think it wise to replace the links on your About Us Page with the <%=
render 'home/header' %> tag, BUT WAIT!

Before you do that, Rails makes this all EVEN EASIER...which means that it's now
time to discuss the application.html.erb file.

INTRODUCING LAYOUTS/APPLICATION.HTML.ERB

You might have noticed a Layouts folder in your /app/views/ folder. What is it?
The Layouts folder contains a file called application.html.erb and that's a special
tile.

It holds the skeleton framework for every web page in our app. Let's take a look at
it:

71

John Elder

lapplviews/layouts/application.html.erb
<IDOCTYPE html>
<html>
<head>

<title>Workspace</title>

<%=javascript_include_tag 'application’, 'data-turbolinks-track' => true %>
<%= csrf_meta_tags %>
</head>
<body>
10
11 <%= yield %>
12
13 </body>
14 </html>
15

1
2
3
4
5 <%= stylesheet_link_tag 'application’, media: 'all’, 'data-turbolinks-track' => true %>
6
7
8
9

So what's going on here? Basically the contents of this file get called and
outputted to the web browser any time a page of your site gets viewed online. The
interesting line to notice here is the <%= yield %> tag.

Basically, that tag is calling the contents of your page and outputting it right there.
So if you went to: https://pinterested-codemy.c9.io/home/about

The application.html.erb file gets called behind the scenes, it grabs all the stuff
from your about.html.erb file and outputs it where the <%= yield %> tag is.

In fact, if you go to your https://pinterested-codemy.c9.io/home/about page in
your web browser and view the page source (right click on the screen and choose

"view page source"), you'll see code that looks just like the application.html.erb
tile.

72

Codemy.com

C' & view-sourcehttps:/pinterested-codemy.c9.io/home/about

2| <html>

3| <head>

4 <titlerborkspace</title>

5 <link data-turbolinks-track="true" href="/assets/home.css?body=1" media="all" rel="stylesheet" />
6| <link data-turbolinks-track="true" href="/assets/application.css?body=1" media="all" rel="stylesheet" />
7 <script data-turbolinks-track="true" src="/assets/jquery.js?body=1"></script>

2| <script data-turbolinks-track="true" src="/assets/jguery ujs.js?body=1"»</script:>

2| <script data-turbolinks-track="true" src="/assets/turbolinks.js?body=1"»«/script>

0| <script data-turbolinks-track="trus" src="/assets/home.js?body=1"></script:>

1| ¢<script data-turbolinks-track="true" src="/assets/application.js?body=1"></script>

2 <meta content="authenticity_token" name="csrf-param” />

3| <meta content="TyCZ1C98dp/l+dcnZUqRIksil1ARoxEaDRBNFEQWHOB="" name="csrf-token" />

14| </head>

15 | <body>

7| <& href="/">Home
12| «a href="/home/about">About Us

20| <hl»About Us</hl:>
1 <p:My namz is John Elder and I'm building & Pinterest Clone at Codemy.com</p>

23 | </body>
E: </html>
(https://pinterested-codemy.c9.io/home/about View Source - Source Code)
Pretty neat.

What that means for us, is there's no need to render our Header partial on every
page of our site, we can simply render it on our application.html.erb file right
above the <%= yield %> tag!

So let's do that now. Open your index.html.erb file and erase the partial line:

1 <%= render 'home/header' %>
2

Just take it right out, and save the index.html.erb file. Now we're going to add that
exact line to our application.html.erb file:

73

John Elder

lappl/views/layouts/application.html.erb
<IDOCTYPE html>
<html>
<head>

<title>Workspace</title>

<%=javascript_include_tag 'application’, 'data-turbolinks-track' => true %>
<%= csrf_meta_tags %>
</head>
<body>
10 <%= render 'home/header' %>
11 <%= yield %>
12
13 </body>
14 </html>
15

1
2
3
4
5 <%= stylesheet_link_tag 'application’, media: 'all’, 'data-turbolinks-track' => true %>
6
7
8
9

See how we added it to line 10? Save the file and close, now head back to your
site: https://pinterested-codemy.c9.io (or whatever your URL is)

You should see our Header links from our Header partial there at the top of the
screen, and if you click the About Us link, you should see the Header links at the
top of it too!

Now any page we create in our app will have those links at the top of the screen.
And any time we want to change the links in the top Header, all we have to do is
edit the list of links in our _header.html.erb file one time and the change will be

reflected on all of our pages.

Pretty cool.

74

Codemy.com

CHAPTER THREE

ADDING BOOTSTRAP

So our app is starting to come together. We've got a couple of pages, and the
beginning of a header navigation system. It's time to start styling our app to make
it look a little more professional.

To do that, we're going to use something called "Bootstrap”, which is a CSS
framework that was created by a couple of guys at Twitter. It used to be called
Twitter Bootstrap, but the guys have since left Twitter and taken Bootstrap with
them, and now maintain it full-time on their own.

Bootstrap is one of the most popular CSS frameworks out there because it is
incredibly easy to use and you don't need any front-end design experience to use
it.

Take a minute to go check it out at: GetBootstrap.com

Click on the "Components" link at the top of the page and just sort of scroll
through all the stuff on that page. You'll see a lot of the different things you can
add to your website listed there.

Below each item you'll see a little snippet of code. Adding the item to your page is
as easy as copying and pasting that code onto your site (in most cases).

INSTALLING BOOTSTRAP

To use Bootstrap in our App we need to add the Bootstrap Gem. The name of the
Gem is "bootstrap-sass ", so let's head over to RubyGems.org and check it out (you

75

John Elder

always want to get into the habit of going to RubyGems.org and checking out a
Gem before blindly installing it.

At RubyGems.org search for bootstrap-sass and it should be the first one listed:

bootstrap-sass 3.3.1.0
Twitter's Bootstrap, converted to Sass and ready to drop into Rails or Compass

**Note: the version number 3.3.1.0 might be different by the time this book is
published, it's no big deal — they're always updating Gems.

Go ahead and click on it and you should see this standard page:

Search Gems.. GEMS GUIDES CONTRIBUTE SIGNIN SIGN UP

DOOLSTrap-sass -- -

Twitter's Bootstrap, converted to Sass and ready to drop into Rails or Compass TOTAL DOWNLOADS
5,495,312
FOR THIS VERSION

VERSIONS: RUNTIME DEPENDENCIES: 08,488

3.3.1.0 -/
3.2.0.1-0
3.2.0.0
3.20.2-5

sass~>32

OPMENT DEPENDENCIES:

3.2.0.1 - July 29, 2014 (200 KB actionpack >= 415 REQ { VERS
activesupport >=4.15 >=0
autoprefixer-rails ~> 1.1 \CENSES:
capybara>=0 MIT

jquery-rails >=3.1.0
json>=138.1

minitest ~> 540

minitest-reporters ~> 1.05

-n

(RubyGems.org bootstrap-sass page)

76

Codemy.com

There on the right-hand side of the screen you should see a little box labelled
"GEMFILE:" with a little clipboard icon under it. Click the clipboard icon to copy
the Gem reference and version number; it should look like this:

TOTAL DOWNLOADS

5,495,312

FOR THIS VERSION

98,488

MIT

gem 'bootstrap-sass B

(gem 'bootstrap-sass', '~>3.3.1.0")

Under that you should also see a link to the Gem's Documentation. That's where
you would normally get instructions for installing and using the Gem. Take a
minute to check it out and read through it.

77

John Elder

So let's go ahead and add Bootstrap to our app. We need to add the reference to
the bootstrap-sass Gem to our Gemfile:

/Gemfile

1 source 'https://rubygems.org’
2 gem 'rails', '4.1.6'

3 gem 'sass-rails', '~>4.0.3'

4 gem 'uglifier', >=1.3.0'

5 gem 'coffee-rails', '~>4.0.0'
6 gem 'jquery-rails'

7 gem 'turbolinks'

8 gem Yjbuilder’, '~> 2.0’

9 gem 'sdoc', '~>0.4.0, group: :doc

10 gem 'spring’, group: :development
11 gem 'bootstrap-sass’, '~> 3.3.1.0'
12

13 group :development, :test do
14 gem 'sqlite3’

15 end

16

17 group :production do

18 gem 'pg’, '0.17.1'

19 gem 'rails_12factor’, '0.0.2'
20 end

21

Notice line 11 is what we added. Save the file and close it, now we need to run the
bundle install command like always when adding a new Gem.

1 $ bundle install
2

78

Codemy.com

Sometimes those two steps are enough to install a Gem, but not this time. We
need to do a few more things (as per the instructions in the Documentation at
RubyGems.org).

Bootstrap is a CSS framework, so we need to add a CSS file to our app. You can
name it just about anything, so I'm going to name it bootstraply.css.scss and it goes
here: /app/assets/stylesheets/bootstraply.css.scss

We haven't really talked about the /app/assets/ folders yet, but if you just glance at
it you'll see that it contains three directories (images, javascripts, and stylesheets).
We won't get into it now, but you can guess that this is where your images,
javascripts and stylesheets go...

For now, just right-click on the stylesheets directory and select "New File" (like
we've done in the past) and name the new file bootstraply.css.scss

Next, open that newly created bootstraply.css.scss file and add these two lines of
code:

1

2 @import "bootstrap-sprockets”;
3 @import "bootstrap";

4

Actually, leave a couple of spaces above those two lines because we'll be adding
more stuff to the top of that file later on.

We're almost finished, now we just need to add a reference to some javascript stuff
that Bootstrap uses. Add these lines to our Javascript reference file:

79

John Elder

lapplassets/javascripts/application.js
//= require jquery

/= require bootstrap

1
2
3.
4 //=require bootstrap-sprockets
5
6 //=require_tree .

7

There will already be a bunch of stuff in that file, just put the two lines in bold
above the //=require_tree . line and you should be good to go.

That should do it! It's a good idea to stop and restart your server whenever you
add a new Gem, so let's do that now. Next head back to your website and reload
the page: https://pinterested-codemy.c9.io (or whatever your URL is)

Home About Us

\Welcome To My App

It's Gonna Kick All Ass...

80

Codemy.com

(https://pinterested-codemy.c9.io with Bootstrap Installed)

Notice anything different? Your page should look slightly different. The link
colors should be different and the font should look a little different. That's
Bootstrap at work.

You'll also notice that all the text is crunched up against the very side of the screen.
Let's fix that real quick. All we need to do is open our application.html.erb file and
wrap the <%= yield %> tag in a container div:

lapplviews/layouts/application.html.erb
<IDOCTYPE html>
<htmlI>
<head>

<title>Workspace</title>

<%=javascript_include_tag 'application’, 'data-turbolinks-track’' => true %>
<%= csrf_meta_tags %>
</head>
<body>
10 <%= render home/header' %>
11
12 <div class="container">
13 <%=yield %>
14 </div>
15
16 </body>
17 </html>
15

1
2
3
4
5 <%= stylesheet_link_tag 'application’, media: 'all', 'data-turbolinks-track’ => true %>
6
7
8
9

81

John Elder

Home About Us

Welcome To My App

It's Gonna Kick All Ass. .

(https://pinterested-codemy.c9.io With Container Class Guitter)

That should add a gutter on the left and right side of the screen. I tend to do this
with all my websites because it looks good and it's a standard layout thing to do.

PLAYING WITH BOOTSTRAP

So let's play around with Bootstrap a little bit. Let's start out by adding a
Jumbotron to our Index page. Head over to GetBootStrap.com and click the
"Components" tab at the top of the screen. Next, scroll down the list of links on the
right hand side of the screen till you see the "Jumbotron” link, click it.

You'll see a Jumbotron with a bit of code below it:

82

Codemy.com

L C' | [} getbootstrap.com/components/#umbotron

Jumbotron

A lightweight, flexible component that can optionally extend the entire viewport to showcase key content on your site.

EXAMPLE

Hello, world!

This is a simple hero unit, a simple jumbotron-style component for calling
extra attention to featured content or information.

Learn more

Copy

<div class="jumbotron">»
<h1>Hello, world!</hl>
<pr.. . iip
<p>Learn more</p>

</div>

(GetBootstrap.com Jumbotron Component)

Take a look at the code below it. You'll notice that to add a Jumbotron to our site,
we just need to wrap whatever we want the Jumbotron to include with this tag:

1 <div class="jumbotron">
2

3 .
4 </div>

So let's do that right now to our Index page:

83

John Elder

lapplviews/homel/index.html.erb

1 <div class="jumbotron">

2 <h1>Welcome To My App</h1>
3 <p>It's Gonna Kick All Ass...</p>
4 </div>

5

Save it, then take a look at the page in your web browser. Pretty neat!

Now let's see how to make some buttons with Bootstrap. Let's add two buttons to
our Jumbotron. Buttons are not listed on the "Components" page at
GetBootstrap.com, but rather on the "CSS" page, so click the "CSS" link at the top of
the page. Then, click the "Buttons" link on the right hand menu. Scroll down till
you see the "Options" section for the buttons.

&« C' [getbootstrap.com/css/#buttons

Options

Use any of the available button classes to quickly create a styled button

EXAMPLE

Buttons
Copy Button tags

<button
<button

<button

<button ty

<button

<button »Danger</button>

<button type="b n" class="btn btn-link">Link</button>

(http://getbootstrap.com/css/#buttons)

84

Codemy.com

You see we have six different color options (white, blue, green, light blue, orange,
and red). The corresponding code for each button can be found below the button
images:

1 <button type="button" class="btn btn-default">Default</button>
2

Notice the Class= part. That's where you designate the color type. Default is
white, Primary is blue, Success is green, Info is light blue, Warning is orange, and
Danger is red.

Normally we only need to copy and paste the code from GetBootstrap.com into
our app (like we did with the Jumbotron), but buttons are a little different because
they are links, and we learned earlier that Rails does links a little differently
(remember we used embedded Ruby to generate our page links).

We'll need to use the same embedded Ruby, but with a little twist. I'll show you
how by adding two buttons to our Index page inside the jumbotron:

lapplviews/home/index.html.erb

1 <div class="jumbotron">

2 <h1>Welcome To My App</h1>

3 <p>It's Gonna Kick All Ass...</p>

4 <%-=link_to 'About Us', home_about_path, class: 'btn btn-default' %>
5 <%-=link_to 'Home', root_path, class: 'btn btn-primary' %>

6 </div>

7

85

John Elder

Home About Us

Welcome To My App

It's Gonna Kick All Ass...

About Us

(https://pinterested-codemy.c9.io with Jumbotron and Buttons)

The link_to tag is exactly the same as we've used before, except we added a
comma at the end and the class: 'btn btn-default’ bit at the end. That tells Rails that
this isn't just a link, but it's a button link. And I got that class stuff directly from the
code beneath the buttons there at GetBootstrap.com

You'll notice I added two different colored buttons, a white one and a blue one just
to mix things up. You can also change the size as well (see size listings in the

button section at Getbootstrap.com).

For instance, if we had wanted to make one of the buttons large, it would look like
this:

1 <%=link_to 'About Us', home_about_path, class: btn btn-default btn-1g' %>
2

**Note: I should point out that I use single quotes (') in the link_to tag above, but
you can also use regular double quotes (") if you prefer. Rails accepts either.

86

Codemy.com

ADDING A NAVBAR

So we've played around with Bootstrap a bit; adding a Jumbotron and some
buttons, but now it's time to pull out the big guns and add a Navbar.

€ C' | [getbootstrap.com/components/#navbar
EXAMPLE
Brand Link Link Dropdown + Searc Submit Link Dropdown ~
Copy

Navbar

ShRG e Default navbar
ass="navbar-toggle collapsed” data-toggle="collapse" data-target="#bs-example- . °
Toggle navigation

»

>

ar">

<span class
</button>
Brand
</div>»

' id="bs-example-n

" data-toggle="dropdown" role="button" aria-

"»<fa>
nu">

<lix<a "#">Action</ar</1iy

<liz<a >Ancther action</1i>

<liz<a >Something else here</a»

<1i ">¢f1lix roaress bars
<liz<a »Separated link</a» e
<1i cla "»<flix &

<lir<a >0One more separated link</a»

(http://getbootstrap.com/components/#navbar Bootstrap Navbar)

Navbars are located on the "Components" page at GetBootstrap.com, so go check
them out. We'll use the first one they have listed, but I don't want a search bar or
links right by the "Brand" logo, so I'll simply erase those lines from the code listed

below the Navbar example.

87

John Elder

We'll also replace the default links with the links to our exact pages. Where should
we put all this code? Surely not at the top of every page of our site! Nope, we'll

put it just once in our _header.html.erb partial file that gets called and outputted

on every page automatically. In fact, we can erase what's in that file now and put
our Navbar code:

lapplviews/home/_header.html.erb

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

<nav class="navbar navbar-default" role="navigation">

<div class="container">
<!-- Brand and toggle get grouped for better mobile display -->
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-
toggle="collapse" data-target="#bs-example-navbar-collapse-1">
Toggle navigation

</button>
Brand
</div>

<!-- Collect the nav links, forms, and other content for toggling -->
<div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
<ul class="nav navbar-nav navbar-right">
<%= link_to 'Home', root_path %>
<%= link_to 'About Me', home_about_path %>

</div><!-- / navbar-collapse -->
</div><!-- /.container-fluid -->
</nav>

There's only a few differences between the code above and the code snippet listed
at GetBootstrap.com

88

Codemy.com

First, notice on line 2: <div class="container">, the default listed at GetBootstrap is
<div class="container-fluid"> but I took out the fluid tag because I don't want it to
be fluid.

Next, notice line 18 and 19, that's where our links go. The only difference between
those two links and our old two links is that these two are wrapped in and
 tags, which is necessary for the Navbar.

Finally, I took out the reference to the search form and the default dropdown links
that come with it because I don't want dropdown links.

So go ahead and save that file and hit reload at your site and your page should
now look like this:

« ¢ f htipsy//pinterested-codemy.c8.io

Pinterested Home About Me

Welcome To My App

It's Gonna Kick All Ass...

About Us m

(https://pinterested-codemy.c9.io/ With Navbar and Jumbotron and Buttons)

You can also change line 12 above to say "Pinterested" instead of brand. In fact,
let's change that line and make it an embedded Ruby link instead of a normal
HTML link. Notice the HTML link has a class of "navbar-brand", we'll have to slap
that onto the end of our Ruby link just like we did for the buttons.

89

John Elder

1 <%=link_to Pinterested', root_path, class: 'navbar-brand' %>
2

Now our Navbar will say Pinterested instead of Brand and have a working link.

Throughout the rest of this book we'll do more stuff with Bootstrap, but I think
you can probably already see how easy it is to work with and how quickly you can
throw up some really professional looking front-end design stuff to make your site
look really good.

Take some time to play around with Bootstrap on your own. Look through the
different thing it offers and try some of them out. Have some fun with it and we'll
get back into the serious stuff in the next chapter.

CUSTOMIZING BOOTSTRAP

Right out of the box, Bootstrap gives you a lot of flexibility, but you can actually
customize Bootstrap to make it look exactly how you want it to look, and it's fairly
easy. Don't like the color of the Navbar? We can change that. Don't like the color
of the Jumbotron or buttons? We can change that too.

Bootstrap is built on something called LESS which is a dynamic stylesheet
language that allows you to define variable and do different things.

HOWEVER, our version of Bootstrap doesn't use LESS, it uses SASS (remember
when we installed the Bootstrap Gem, it was called bootstrap-sass?

SASS stands for "Syntactically Awesome StyleSheets" and is a scripting language
similar to LESS.

920

Codemy.com

Don't worry, you don't need to know much about SASS or LESS, all you need to
know is one thing...LESS uses @ signs and SASS uses $ signs. We won't get much

deeper than that!

So what?

SASS allows us to customize Bootstrap down to the nth level and get it to look
exactly how we want it to look. To see how, head back to GetBootstrap.com and
click the "Customize" link at the top of the screen. Next click the "Less Variables"

link on the right-hand side of the screen.

You should see a big list of things, all of which can be customized.

€« C' | [) getbootstrap.com/customize/#less-variables

Less variables

stylesheets.

Reset to defaults

Customize Less variables to define colors, sizes and more inside your custom CSS Less variables

Colors
Gray and brand colors for use across Bootstrap
@gray-base @gray-darker @gray-dark
#0600 lighten(@gray-base, 13.5%) lighten(@gray-base, 20%)
@gray @gray-light @gray-lighter
lighten(@gray-base, 33.5%) lighten(@gray-base, 46.7%) lighten(@gray-base, 93.5%)
@brand-primary @brand-success @brand-info
darken(#428bca, 6.5%) #5cb85¢C #Sbhcade
@brand-warning (@brand-danger
#fBadde #d9534f
Scaffolding
Settings for some of the most global styles
@body-bg @text-color @link-color
#F @gray-dark @brand-primary

(http://getbootstrap.com/customize/#less-variables — Available Variables To Customize)

91

John Elder

Browse through the list and pick something out.

variables since we've got a Jumbotron on our Index page.

Let's look at the Jumbotron

<«

€ | [1 getbootstrap.com/customize/#j.

Jumbotron
@jumbotron-padding
3epx

@jumbotron-heading-color

inherit

imbotron

@jumbaotron-color

inherit

@jumbotron-font-size

ceil((@font-size-base *

Form states and alerts

Define colors for form feedback states and, by default, aleris.

(@state-success-text

#3c763d

@state-info-text

(@state-success-bg

#dffeds

@state-info-bg

s
1.5))

@jumbotron-bg

@gray-lighter

(@state-success-border

darken(spin(@state

@state-info-border

-success-bg,

Less variables

#31708F #d9edf7 darken(spin(@state-info-bg, -1€
@state-warning-text @state-warning-bg @state-warning-border e
Jumbotron
#8a6d3b #fcfiel darken(spin(@state-warning-bg, Fi states
@state-danger-text @state-danger-bg @state-danger-border
#a94442 #f2dede darken(spin(@state-danger-bg, -

(http://getbootstrap.com/customize/#jumbotron)

All of the things listed here are things we can customize for our app. For instance,
let's take this one:

1 @jumbotron-bg

2

Notice the @ sign? That's because it's Less.
we're using Sass so we need to change the @ to a $ when we use these things.

But like I said, we aren't using Less,

And how do we use them? We simply add them to our bootstraply.css.scss file
that we created earlier when we installed the Bootstrap Gem.
92

Codemy.com

lapplassets/stylesheets/bootstraply.css.scss
1 $jumbotron-bg: blue;

2 .

3.

4 @import "bootstrap-sprockets"”;

5 @import "bootstrap";

6

7

Remember earlier when I told you to add some space above those two @import
lines we added when we first created this file? That's because any time you add a
Sass variable to this file, it needs to be ABOVE those two lines.

So what did we do here? We told our Bootstrap to make the background of our
Jumbotron blue. Notice the format; $variable: output;

You have your Sass variable (that we took from the "Customize" page at
GetBootstrap.com) with a dollar sign $ in front of it and a colon behind it, then a

space, then whatever output you want (in our case blue) followed by a semi-colon.

I typed blue, just to make a clear example, but normally you would use a color hex
code like: #0041a0; which is a shade of blue. So that line would look like this:

1 $jumbotron-bg: #0041a0;
2
You get the idea. So go ahead and save that and then go check it out by reloading

your website at: https://pinterested-codemy.c9.io (or whatever your URL is)

The Jumbotron should be blue now. Neat!

93

John Elder

And you can do that for any variable in the Less Variables list there on the
"Customize" page at GetBootstrap.com

For instance, if you wanted to make the background color of the Navbar green,
and the body of the entire site Pink, you would do this:

lapplassets/stylesheets/bootstraply.css.scss
$jumbotron-bg: blue;

$ navbar-default-bg: #014421;

$body-bg: #fa9fb9;

1

2

3

4 .
5.
6 @import "bootstrap-sprockets";

7 @import "bootstrap";

8
In fact, try that out and see how it looks! The important thing is that you can
customize almost everything, from sizes, to colors, and more.

Spend some time going through that list and looking at all the different things you

can customize in Bootstrap. And it's all as easy as adding a single line of code to
your bootstrap.css.scss file.

94

Codemy.com

CHAPTER FOUR

ADDING USERS WITH DEVISE

Our app is starting to come together! Now that we've introduced Bootstrap, we
can begin to shape the look and feel of the app. But when you get right down to
it...our app still doesn't really do anything.

It's time to change that.

One of the key components of our app is the ability for people to sign up for a user
account, log in, log out, and update their user profile.

We don't want just anyone to be able to post Pinterest-style 'pins' to our site, we
want them to sign up and sign in first.

Back in the old days, to write the code needed to handle all of that would be a
huge pain in the ass and take a long time. There would have been lots of database
work to deal with, and I hate database work!

Luckily, this is Ruby on Rails, and there's a Gem that will handle all of that nasty
stuff for us...it's called "Devise".

Devise is a user authentication Gem that will easily handle signing in new users,
allowing them to log in, log out, and update their own user profiles. It will also
generate all the fill-out forms needed to accomplish this task, and handle all the
nasty database stuff too.

All we have to do is install it and configure it, and we're off and running.

Head over to RubyGems.org and search for Devise. As of the writing of this book,
Devise has been downloaded and installed nearly ten million times...so yeah, it's a

95

John Elder

popular Gem (and why not — try to think of any website in the world that doesn't
need to sign up, in, and out users!).

As of the writing of this book, devise is on version 3.4.1 so that's what I'll add to
our Gemfile:

/Gemfile
source 'https://rubygems.org’

1

2

3 gem 'rails', '4.1.6'

4 gem 'sqlite3’

5 gem 'sass-rails', '~>4.0.3'
6 gem 'uglifier', >=1.3.0'

7 gem 'coffee-rails', '~>4.0.0'

8 gem 'jquery-rails'

9 gem 'turbolinks'

10 gem 'jbuilder’, '~> 2.0’

11 gem 'sdoc’, '~>0.4.0, group: :doc

12 gem 'spring’, group: :development
13 gem 'bootstrap-sass’, '~>3.3.1.0'

14 gem 'devise’, '~>3.4.1'

15

16 group :development, :test do

17 gem 'sqlite3'

18 end

19

20 group :production do

21 gem 'pg’, '0.17.1'

22 gem 'rails_12factor’, '0.0.2'
23 end

24

96

Codemy.com

As always, when we add a new Gem to our Gemfile, we need to run bundle
install:

1 $ bundle install
2

Of course, Devise does a heck of a lot, and so it shouldn't surprise us that there are
more steps to install and configure it than other Gems. You can read those steps in
the Devise Documentation found at RubyGems.org but I'm going to walk you
through them right now.

First we need to run the generator:
1 $ rails generate devise:install

2

That will generate a bunch of text to the terminal screen, and if you take a look at
that text, you'll notice that it contains instructions for 5 more steps that you need to
complete in order to install devise. Don't worry, they aren't too bad and we're
going to walk through them right now.

Here are the instructions, straight from Devise's terminal output:

1. Ensure you have defined default url options in your environments files. Here is
an example of default_url_options appropriate for a development environment in
config/environments/development.rb:

config.action_mailer.default_url_options = { host: 'localhost', port: 3000 }

In production, :host should be set to the actual host of your application.

97

John Elder
2. Ensure you have defined root_url to *something* in your config/routes.rb. For
example: root to: "home#index"
3. Ensure you have flash messages in app/views/layouts/application.html.erb. For
example:

<p class="notice"><%= notice %></p>

<p class="alert"><%= alert %></p>
4. If you are deploying on Heroku with Rails 3.2 only, you may want to set:

config.assets.initialize_on_precompile = false

5. You can copy Devise views (for customization) to your app by running;:

rails g devise:views
So let's take a look at these. Right off the bat, we can ignore number four because
we aren't using Rails 3.2 — in fact, we're using Rails 4.1.6 or higher.

We can also ignore number two because we've already defined our app's root
index page earlier.

So that leaves us with 1, 3, and 5. Let's walk through those now.

STEP ONE

Let's look at step one. Basically we need to add a line of code to two files.
98

Codemy.com

/config/environments/development.rb:

1 .

2 .

3 config.action_mailer.default_url_options = { host: 'localhost’, port: 3000 }
4 end

5

Just paste line three at the bottom of that file (above the final 'end' that's already
listed there).

Next we need to make a similar change to this file:

/configlenvironments/production.rb:

1

2

3 config.action_mailer.default_url_options = { host: ' pinterested99.herokuapp.com'}
4 end

5

Check out line three of this one. It's basically the same as line three from the last
tile, but instead of host: 'localhost’, port: 3000 we put the URL of out actual live
app on Heroku. You should put the URL of whatever you named your app at
Heroku.

What's going on here? Well these two files correspond with our development
environment and our production environment settings. We're basically just telling
our app to use the Webrick server for our local development environment and use
Heroku for our production environment.

929

John Elder

STEP THREE

Now let's look at Step Three.

Step three wants us to add a bit of code to handle flash messages. Flash messages
are basically little automatic prompts that appear on the web site whenever a user
does something.

For instance, when a user signs in, they'll get a flash message at the top of the
screen that says something like "You have successfully signed in". When they sign
out, they'll get one that says "You have successfully signed out", etc.

Devise handles all of these messages automatically, but we need to add a bit of
code to our app to show Devise where on the page we want those messages to

appear.

Devise has given us some suggested code to post on our site:

1 <p class="notice"><%= notice %></p>
2 <p class="alert"><%= alert %></p>
3

But we want to change that a bit so that we can use Bootstrap to alter the look and
feel of those flash messages. In fact, if you head back to GetBootStrap.com and
click the "Components" link, you can scroll through the list and click the "Alerts"
link.

A flash message is basically an alert, so we'll be using Bootstrap's alert class. You'll
notice Bootstrap offers four colors for alerts; green (success), blue (info), yellow
(warning), red (danger). We'll use blue.

100

Codemy.com

So where should we post the code to handle the Devise flash messages? We want
those messages to be able to flash on any page of our website, so the logical place
to put the code would be our /app/views/layouts/application.html.erb file, right
above the <%= yield %> tag and below our container div, so let's do that:

lapplviews/layouts/application.html.erb

<div class="container">
<% flash.each do Iname, msg!| %>
<%= content_tag(:div, msg, class: "alert alert-info") %>
<% end %>
<%= yield %>
</div>

O 00 NI O Ul b= W NP

—_
S

So let's look through this code since it's a little different than what Devise
recommended to us.

This is a basic Ruby loop. It's basically saying: "for each flash message, do
something", in our case the 'something' is to output the message in a CSS div with
class "alert alert-info".

Where did I get class "alert alert-info"? I copied it from the code snippet over at
GetBootstrap under the alert for a blue box. So our alerts will be blue.

You'll also notice that the first line Ruby tag doesn't have an equal sign as it's
opening tag! <% flash.each do Iname, msg!| %> (the second line does but not the
first).

What gives? Up until now, all of our embedded Ruby has started with a <%= tag.
The equal sign means "output this to the screen”, and we don't want to output

101

John Elder

anything when running our loop. We only want to output if the loop becomes
true, hence the second line DOES have a <%= tag...because we want to output that
stuff.

STEP FIVE

The only thing left to do is add the command from step five into the terminal, so
let's go ahead and do that now:

1 $ rails g devise:views
2

This runs the generator for the devise views. Notice in the past we've always
written out generate commands, like this:

1 $ rails generate devise:views
2

A\l "

Just typing "g" instead of generate is shorthand and completely acceptable.

After you run this command, check out your /app/views/ directory. You should
see a new folder named "devise". That folder contains a bunch of folders and all
the new pages that Devise has automatically created to handle stuff like logging in,
logging out, editing user profiles, resetting passwords, and stuff like that. Check it
out!

The terminal should have displayed a bunch of text too...that's a breakdown of
what Devise just added. So you can eyeball it. See all those pages? For instance,

let's look at /app/views/devise/registrations/new.html.erb

102

Codemy.com

I'm guessing that's the page that allows people to register for your site (create a
new' registration). Open it in the text editor and you'll see a "Sign Up" tag right at
the top of the file.

How about: app/views/devise/sessions/new.html.erb? That's the page that allows
people to log in. When someone logs into your web site they are essentially
creating a session. Logging in is the act of creating a new session.

Similarly, logging out is the act of deleting a session.

Devise has created a BUNCH of stuff, and to tell you the truth, we aren't even
going to use most of it. So don't get overwhelmed.

We're not quite done installing Devise, there's still one more step. We've got devise
set up, and we've created our views but we haven't connected Devise with our
database so that we can keep track of all those users. Luckily it's not hard, we just
need to issue two commands:

1 $ rails generate devise user
2 $ rake db:migrate
3

WORKING WITH DATABASES IN RAILS

We haven't really talked about databases much, but we need to now. Rails makes
working with databases super easy, but you need to understand what's going on.
Whenever you want to do something with databases in Rails, you create a
database migration, and then push that migration into the database. Think of a

migration as a manifest...a list of stuff you want. Create your list, then stick it in
the database.

103

John Elder

Just now, when we issued the command: $ rails generate devise user we were
creating a migration, and adding 'users' to it. In fact, you can even see the
migration file. Migration files are located in the /db/ folder: /db/migrate/

Running that rails generate devise user command created this migration for me:
20141224175632_devise_create_users.rb located here:

/db/migrate/20141224175632_devise_create_users.rb
1 class DeviseCreateUsers < ActiveRecord::Migration

2 def change

3 create_table(:users) do It|

4 ## Database authenticatable

5 t.string :email, null: false, default: "
6 t.string :encrypted_password, null: false, default: "
7

8 ## Recoverable

9 t.string :reset_password_token

10 t.datetime :reset_password_sent_at

11

12 ## Rememberable

13 t.datetime :remember_created_at

14

15 ## Trackable

16 tinteger :sign_in_count, default: 0, null: false
17 t.datetime :current_sign_in_at

18 t.datetime :last_sign_in_at

19 t.string :current_sign_in_ip

20 t.string :last_sign_in_ip

21

22 ## Confirmable

23 # t.string :confirmation_token

24 # t.datetime :confirmed_at

25 # t.datetime :confirmation_sent_at

26 # t.string unconfirmed_email # Only if using reconfirmable
27

28 ## Lockable

29 # tinteger :failed_attempts, default: 0, null: false # Only if lock strategy is :failed_attempts
30 # t.string :unlock_token # Only if unlock strategy is :email or :both

31 # t.datetime :locked_at

104

Codemy.com

32

33

34 t.timestamps

35 end

36

37 add_index :users, :email, unique: true

38 add_index :users, :reset_password_token, unique: true
39 # add_index :users, :confirmation_token, unique: true

40 # add_index :users, :unlock_token, unique: true
41 end

42 end

43

So there's a lot of stuff here, and you don't really need to know what any of it
means, but take a look through it and see if anything jumps out at you.

We can see there's a reference to emails and passwords (because our users will log
in with emails and passwords), there's some time stuff so we can keep track of

when someone is logged in, and there's password reset stuff.

Like I said though, we don't really need to know what any of that stuff means at
this point, or really ever. Just know that we've created a migration.

To push that migration into our database, we issued the $ rake db:migrate
command.

DEVELOPMENT DATABASE VS. PRODUCTION DATABASE

Before we go any further, we need to talk databases a bit (Since we're using them
now). I mentioned this earlier when we set up Heroku for the first time but I
wanted to touch on it again.

105

John Elder

In our development environment, we're using a database called: sqlite3. It's a very
light-weight database that comes installed with Rails. In fact, if you look at your
Gemfile, you'll see a reference to it.

Like I mentioned earlier, sqlite3 isn't really an appropriate database to use for our
tinished production level website. We needed to designate another database for
that.

We're going to use the Postgres database. Why? Heroku likes Postgres, and it's
super easy to use. The only thing we really need to do is add the Postgres Gem to
our Gemfile (which we did earlier). You'll remember it was a little more
complicated than adding a regular Gem, simply because we need to tell our app to
use sqlite3 for development and postgres for production...but still pretty simple.

So here's what we did:

/Gemfile
source 'https://rubygems.org'

1

2

3 gem 'rails', '4.1.6'

4 gem 'sass-rails’, '~>4.0.3'

5 gem 'uglifier', >=1.3.0'

6 gem 'coffee-rails', '~>4.0.0'

7 gem 'jquery-rails'

8 gem 'turbolinks'

9 gem 'jbuilder’, '~>2.0'

10 gem 'sdoc’, '~>0.4.0', group: :doc
11 gem 'spring’, group: :development
12 gem 'bootstrap-sass', '~>3.3.1.0'

13 gem 'devise', '~>3.4.1'

14

15 group :development, :test do

16 gem 'sqlite3'

17 end

106

Codemy.com

18

19 group :production do

20 gem 'pg), '0.17.1
21 gem 'rails_12factor’, '0.0.2'
22 end

23

So we've done two things here. First, we REMOVED the original reference to the
gem 'sqlite3' that was in there from when we started our project. We still want to
reference it, but we do that by adding it to the group reference on line 15.

That 'group’ reference is basically telling our app to use sqlite3 in our development
and test environment (remember, we won't be doing any test environment stuff in
this book).

Second, we added the postgres database (pg) and rails_12factor (which you need
to add with it for Heroku), and designated those to be used in our production
environment.

Whenever we add Gems to our Gemfile we need to run bundle install, but this
time it needed to be a little different. We needed to run bundle install without
production. If you think about that; it makes sense, because we don't want to
install the postgres database in our development environment. Here's the
command:

1 $ bundle install --without production
2
Note: that 'without' has two dashes in front of it --

We only need to run that special bundle install command once; Rails will
remember from now on not to install production stuff.

107

John Elder

Why am I talking about all of this again? Because I want to make sure that you
understand that we are using two separate databases. It's important to keep that
in mind.

Why? Because whenever we run a migration, we're only pushing that migration
into our local database, not our production database. We also need to push it into
the production database (postgres in this case) up on Heroku.

PUSHING MIGRATIONS TO POSTGRES AT HEROKU

Stick with me here... when we ran the $ rails generate devise user command we
created a migration for our users. Then, when we ran the $ rake db:migrate
command we pushed that migration into our database...that is, into our sqlite3
database.

We haven't pushed it into our Postgres database sitting up at Heroku; and we need
to do that. Every time you push a new migration to the local development
environment database (sqlite3), you ALSO need to push the migration to your
production environment database (postgres). You do that with this command:

1 $ heroku run rake db:migrate

2

That looks an awful lot like the "rake db:migrate" command we use locally, it just
slaps a "heroku run" to the front of it. Just remember that if you don't run this
command, your database won't work on Heroku.

108

Codemy.com

CHECK OUT OUR NEW DEVISE WEB PAGES

Alright! We've now completed the Devise installation, we've run our Users
migration so Devise can keep track of all the users in both our development and
production environments, and we've generated the Views that create the pages
that allow people to log in and out and all that good stuff.

So let's take a look at those pages!
First, be sure to stop your web server and restart it.

Next, to find out where those pages are, we need to find the routes that Devise has
generated for each of them. So let's run our trusty rake routes command:

1 $ rake routes

2

Remember the last time we ran this command, we only had two pages in our app
(index and about). Now there's a whole bunch of stuff listed there!

$ rake routes

Prefix Verb URI Pattern Controller#Action
new_user_session GET /users/sign_in(.:format) devise/sessions#new
user_session POST /users/sign_in(.:format) devise/sessions#create

NN OO bW DN -

Just like earlier, the first column is the route. The second is whether it's a web page
(GET), a form submission (POST), or a logout (DELETE). The third column is the

109

John Elder

URL pattern, and we'll use that to navigate to the page in our web browser. The
fourth column is the Controller Action.

I didn't print the whole list here, just the first couple of listings, but you can run
the rake routes command yourself and see the full list.

Remember, the ones listed as GET generally tend to be web pages. So let's pick
one of them and punch it into our web browser and see what it looks like!

https://pinterested-codemy.c9.io/users/sign_up (or whatever your url is)

€ C' | & nttps;//pinterested-codemy.c9.io/users/sign_up 9w =

Pinterested Home About Me

Signh up

Email
Password (8 characters minimum)
Password confirmation

Sign up
Login

(https://pinterested-codemy.c9.io/users/sign_up - Devise User Sign Up Page)

Check out the Login page (/users/sign_in):
https://pinterested-codemy.c9.io/users/sign_in (or whatever your url is)

110

Codemy.com

L C' @ htips//pinterested-codemy.c9.io/users/sign_in =

Pinterested Home About Me

Log in

Email
Password

Remember me
Log in
Sign up
Forgot your password?

(https://pinterested-codemy.c9.io/users/sign_in - Devise Users Sign In Page)
There's a link on that page for people who have forgotten their password and need
it sent to them, you can check that out as well.
These pages and the forms on them are fully functional. You can now sign up for

an account, sign in etc. Sure, the pages look a little lame, but the functionality
works and we'll spruce up how they look next.

STYLING DEVISE VIEWS

So let's dive in and make these pages look a little better. It's fairly easy to do. All
of the files that we need to edit are located in your /app/views/devise/ folder. Let's
start by editing the page that allows people to sign up for an account:

lapplviews/devise/registrations/new.html.erb
<h2>Sign up</h2>

1
2
3 <%= form_for(resource, as: resource_name, url: registration_path(resource_name)) do |fl %>
4 <%= devise_error_messages! %>

5

111

John Elder

6 <div class="field">

7 <%= f.label :email %>

8 <%=f.email_field :email, autofocus: true %>
9 </div>

10

11 <div class="field">

12 <%= f.label :password %>

13 <% if @validatable %>

14 (<%= @minimum_password_length %> characters minimum)
15 <% end %>

16 <%= f.password_field :password, autocomplete: "off" %>

17 </div>

18

19 <div class="field">

20 <%= f.label :password_confirmation %>

21 <%=f.password_field :password_confirmation, autocomplete: "off" %>
22 </div>

23

24 <div class="actions">

25 <%= f.submit "Sign up" %>

26 </div>

27 <% end %>

28

29 <%-=render "devise/shared/links" %>

30

This may be the most complicated looking file we've seen so far, but it's not that
bad. To edit these Devise views, we're going to use Bootstrap (of course!).

Head over to GetBootstrap.com and click the CSS tab at the top of the screen; then
click the "Forms" link on the right-hand side of the screen. There are a couple of
things we need to do. We won't be copying and pasting all the code below the
example form at GetBootstrap.com, instead we'll just pick out two pieces.

112

Codemy.com

First, Bootstrap wants us to wrap each input field and label in a form-group div:

1 <div class="form-group">
2

3 .

4 </div>

Our new.html.erb file already wraps those things in a div, but it names the div
class as "field". You can see this on line 6, 11, and 19 above.

No problem, just replace "field" with "form-group on lines 6, 11, and 19 above.

Second, Bootstrap wants us to add a "form-control" class to each input field. (the
input field is the box that you type stuff in on the web form). In our new.html.erb
file above, those are located on line 8, 16, and 21:

7
8 <%= f.email_field :email, autofocus: true, class: 'form-control’ %>

9

15
16 <%= f.password_field :password, autocomplete: "off", class: 'form-control' %>

17

20
21 <%= f.password_field :password_confirmation, autocomplete: "off", class: 'form-control' %>

22

Third, notice how our form makes people type in a password, and then type in
that password again to confirm it? I don't really think we need people to double
type their password for our simple app, so I'm going to remove that. All we have
to do is erase lines 19 thru 22.

113

John Elder

Fourth, what about the 'Submit' button? It looks a little bland...we can use a
Bootstrap button like we've used on our Index page. Let's do that:

24
25 <%= f.submit "Sign up", class: 'btn bin-primary' %>
26

So here's what our updated file should look like now:

lapplviews/devise/registrations/new.html.erb
<h2>Sign up</h2>

<%= form_for(resource, as: resource_name, url: registration_path(resource_name)) do Il %>

<%= devise_error_messages! %>

1
2
3
4
5
6 <div class="form-group">

7 <%= f.label :email %>

8 <%= f.email_field :email, autofocus: true, class: 'form-control' %>

9 </div>

10

11 <div class="form-group">

12 <%={f.label :password %>

13 <% if @validatable %>

14 (<%=@minimum_password_length %> characters minimum)

15 <% end %>

16 <%=f.password_field :password, autocomplete: "off", class: 'form-control' %>
17 </div>

18

19

20 <div class="actions">

21 <%= f.submit "Sign up", class: 'btn btn-primary' %>

22 </div>

23 <% end %>

114

Codemy.com

24
25 <%-=render "devise/shared/links" %>

26

€ = C' { hitps//pinterested-codemy.c9.io/users/sign_up

b
[}

Pinterested Home About Me

Signh up

Email

Password (8 characters minimum)

Login

(https://pinterested-codemy.c9.io/users/sign_up - Devise User Sign Up Page)

So this definitely looks better, but we can do even better by adding panels. Head
back to GetBootstrap.com, click the "Components" link, and then click the "Panels"
link on the right-hand side of the screen.

We want to add a "Panel with heading", and we'll also put a "Panel with footing" at
the bottom where our "login" link is. Here's how:

lapplviews/devise/registrations/new.html.erb
<div class="panel panel-default">
<div class="panel-heading"><h2>Sign up</h2></div>

<div class="panel-body">

<%= form_for(resource, as: resource_name, url: registration_path(resource_name)) do Ifl %>

<%= devise_error_messages! %>

1
2
3
4
5
6
7
8

<div class="form-group">

115

John Elder

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

You can see the changes in bold. Basically we wrapped the whole page in a div
with class="panel panel-default”, wrapped the page header in a div with
class="panel-heading", wrapped the main meat and potatoes of the page in a div
with class="panel-body", and then wrapped the links at the body of the page in a

<%= f.label :email %>

<%= f.email_field :email, autofocus: true, class: 'form-control' %>

</div>

<div class="form-group">
<%= f.label :password %>
<% if @validatable %>
(<%= @minimum_password_length %> characters minimum)
<% end %>

<%= f.password_field :password, autocomplete: "off", class: 'form-control' %>

</div>

<div class="actions">
<%= f.submit "Sign up", class: 'btn btn-primary’ %>

</div>

<% end %>

</div>

<div class="panel-footer"><%= render "devise/shared/links" %></div>

</div>

div with class="panel-footer".

The result should look like this:

116

Codemy.com

€ = C @ hiips//pinterested-codemy.c9.io/users/sign_up 7

S
m

Pinterested Home About Me
Sign up
Email

Password (8 characters minimum)

Log in

(https://pinterested-codemy.c9.io/users/sign_up - Devise User Sign Up Page Finished Layout)

You can go through yourself and make these exact same changes to the other
Devise views that have forms:

/app/views/devise/registrations/edit.html.erb (lets users edit their profile)
/app/views/devise/sessions/new.html.erb (lets users log in)
/app/views/devise/passwords/new.html.erb (forgotten password page)

You'll notice that those pages all look similar, so you should be able to duplicate

the changes we just made to our /app/views/devise/registrations/new.html.erb to
each of them.

117

John Elder

ADDING LINKS TO DEVISE PAGES

So now we've got our Devise pages looking pretty good, now we need to add links
to those pages into our Navbar at the top of each page. We'll add those links using
the Ruby link_to tag like we've done in the past, but this time we'll add a little
twist.

We aren't going to want to show links to all of the devise pages to all of the people
who visit our site. For instance, we don't want to show a link to the "Edit User"
page on our Navbar if the person viewing the site has not logged in yet (or isn't
even a user!).

Similarly, we don't need to show a link to the login page after a person has already
logged in.

And finally, we need to add a link to log out, and that link looks a little different
than other links we've created in the past.

DETERMINING WHETHER A USER IS LOGGED IN OR NOT

So first things first, how can we determine whether a user is already logged in or
not? Luckily it's pretty easy in rails, we'll just use a bit of Ruby code and a simple
"It" statement.

It will basically say "If a user is logged in, show these links, if not — show these
other links". Here's the code:

1 <% if user_signed_in? %>
2
3

118

Codemy.com

4 <% else %>
5

6 .

7 <% end %>
8

The links that we want to appear only when a user is signed in (edit profile,
logout) are listed right after line one and before the "else" statement. The links that
we'd like to appear when a user is not signed in (login, sign up) go after the "else"
statement and before the "end" statement.

To get the paths to the different pages we'd like to add (edit profile, logout, login,
sign up) we can run our trusty rake routes command:

1 $ rake routes

2

And pay special attention to the ones listed as "GET" (remember to slap a _path to
the end for our link_to Ruby code:

Log In: new_user_session_path
Edit Profile: edit_user_registration_path
Sign Up: new_user_registration_path
Log Out: destroy_user_session_path

Let's look at the last one, the Log Out path. When you run the rake routes
command, you'll see it listed as DELETE, not GET. This makes a certain amount of
sense because logging out is basically "deleting a session".

119

John Elder

But creating a link to a DELETE event is a little different than a regular link. It
looks like this:

1 <%=link_to Logout’, destroy_user_session_path, method: :delete %>
2

You'll notice the link is the same, except we slapped a "method: :delete" bit to the
end. Pretty simple.

UPDATING THE NAVBAR

So now we've got our If statement lined up, and we've got the paths to the new
Devise pages that we'd like to add. Let's update our Navbar:

lapplviews/home/_header.html.erb
<nav class="navbar navbar-default" role="navigation">
<div class="container">
<!-- Brand and toggle get grouped for better mobile display -->
<div class="navbar-header">

toggle="collapse" data-target="#bs-example-navbar-collapse-1">
Toggle navigation

10
11 </button>
12 <%=1link_to 'Pinterested’, root_path, class: navbar-brand' %>
13 </div>
14
15 <!-- Collect the nav links, forms, and other content for toggling -->

1
2
3
4
5 <button type="button" class="navbar-toggle collapsed" data-
6
7
8
9

16 <div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
120

Codemy.com

17 <ul class="nav navbar-nav navbar-right">

18 <%= link_to 'Home', root_path %>

19 <%= link_to 'About Me', home_about_path %>

20

21 <% if user_signed_in? %>

22 <%= link_to 'Edit Profile', edit_user_registration_path %>
23 <%=link_to 'Logout’, destroy_user_session_path, method: :delete %>
24 <% else %>

25 <%= link_to "Login", new_user_session_path %>

26 <%= link_to "Join", new_user_registration_path %></1i>

27 <% end %>

28

29 </div><!-- /navbar-collapse -->
30 </div><!-- /.container-fluid -->
31 </nav>

32

So the changes are lines 21 through 27. Notice we put the IF statement that checks
whether a user is signed in or not AFTER the first two links (Home and About)
because we want those two links to show up if a user is signed in or not signed in.

We're moving right along. We can add new users, log in, log out, update user
profiles, and our Navbar now shows links dynamically based on whether a user is

logged in or out.

Now it's time to start adding real functionality to our site and allow people to start
uploading pinterest style "pins", and that's what we'll do in the next chapter.

121

John Elder

CHAPTER FIVE

BUILDING A SCAFFOLD

We're getting down to the meat and potatoes of our app now. In this chapter we're
going to start to build out the main functionality for our site.

Let's break down that functionality...

Since we're building a Pinterest clone, we're going to want to be able to upload a
'pin' that consists of an image, and a written description. We'll need to store that
information in our database and show that information on the website.

Rails (of course) has something that will take care of all of that for us, and it's
called a scaffold. A Rails scaffold creates a model, a migration, controllers to
handle everything, and views to see and manipulate things.

To create a scaffold, we just need to issue one simple command:

1 $ rails g scaffold pins description:string

2

We've seen a similar command when we set up Devise. 'rails g' stands for 'rails
generate', so this command is telling Rails to generate a scaffold named 'pins'.

We can name our scaffold anything, but sticking with our pinterest theme, we'll
name ours 'pins'. We could just as easily have named it horses, or tweets, or posts.

The convention is to name it something plural (ending in an s).

The command ends with 'description:string'. That tells Rails to create a column in
our database called description, and to give that description a string data type.

122

Codemy.com

When dealing with database stuff, you will generally work with either strings
(which is a short string of characters or text), integers (whole numbers), decimals
(decimal numbers), or maybe text (longer text like paragraphs). Possible data
types include:

:binary
:boolean
:date
:datetime
:decimal
:float
:integer
:primary_key
:references
:string

‘text

:time
:timestamp

We don't really need to know what all of those are right now, you can do a little
research in the future as you grow as a Rails developer.

The 'rails g scaffold' command creates a migration, and like all migrations we'll
need to rake our database to push the migration up to the database:

1 $ rake db:migrate
2

And later when we push these changes up to Heroku, we'll need to run Heroku's
rake db:migrate command:

123

John Elder
1 $ heroku run rake db:migrate

2

When you ran the 'rails g scaffold' command, you probably noticed that the
command line outputted a bunch of things that Rails just created for you. You'll
notice that there's a new folder in your views directory called /pins/.

Before we look through those files, we need to restart our server and check out our
website because something strange has happened.

Head over to https://pinterested-codemy.c9.io (or whatever your URL is)

€ C' | & nttpsy/pinterested-codemy.c9.io

Pinterested Home AboutMe Edit Profile Logout

Welcome To My App

It's Gonna Kick All Ass...

About Us

(https://pinterested-codemy.c9.io — After Scaffold)

Reload the page. Notice anything different? Everything should look a little 'off".
The font is a slightly different size, the buttons look just a little different, and
everything seems...somehow wrong.

What happened? Whenever we generate a scaffold in Rails, one of the files that
gets created is a CSS file for the scaffold! That CSS file is over-writing our
Bootstrap CSS file (the one we created and named bootstraply.css.scss).

124

Codemy.com

So take a look at the /app/assets/stylesheets directory and you should see the new
stylesheet, named: /app/assets/stylesheets/scaffolds.css.scss

If you want, you can open that file and just take a look at it for fun, but what we
need to do is simply delete it. You can do that by putting your mouse over the file
name right there on the directory tree on the left-hand side of your development
environment, right-clicking, and selecting "Delete".

Now if we head back to our website and hit reload, the site should look the way it
did earlier under Bootstrap.

CHECKING OUT THE SCAFFOLD VIEWS

The 'rails g scaffold' command that we ran created a bunch of files for us, so let's
take a look at all of them now by running our trusty rake routes command:

1 $ rake routes

2

At the top of the list you should see a bunch of routes marked 'pins'. Pay special
attention to the GET routes as those are generally the ones that create pages on our
website.

You should see:
pins

new_pin
edit_pin

pin

125

John Elder

The one we want to focus on right now is 'pins', in fact; you can head to your
website and take a look at it right now:

https://pinterested-codemy.c9.io/pins (or whatever your URL is)

&«

C' & https//pinterested-codemy.c9.io/pins

b3
m

Pinterested Home About Me Edit Profile Logout

Listing pins
Description

New Pin

(https://pinterested-codemy.c9.io/pins)

As you can see, there isn't much there yet, because we haven't added any actual

pins yet. But you can see the link that says "New Pin" and if you click on it, you'll
find a page where you can create and upload a pin.

&~

| Create Pin |

C' & https;//pinterested-codemy.c9.io/pins/new

Pinterested Home AboutMe Edit Profile Logout

New pin

Description

Back

126

(https://pinterested-codemy.c9.io/pins/new)

Codemy.com

The only thing that the form asks for is the "Description”, and that's because when
we ran our 'rails g scaffold’ command, the only item we listed was
description:string.

"But, I thought we would be making pins with images?!" yeah — yeah, one step at
a time! Right now I just want to show you how to get things rolling with a simple

description; we'll add images soon.

So create a pin. Type in something into the description field and click the "Create
Pin" button. Then head back to:

https://pinterested-codemy.c9.io/pins (or whatever your URL is)

You should see your pin listed there. Go ahead and create a few more pins, just to
get things rolling:

&« C {3 https;/pinterested-codemy.c9.io/pins =

Pinterested Home About Me Edit Profile Logout

Listing pins

Description

This is my very first pin. I'm very proud of it

It 1 had to guess, I'd say this is my second pin..
Third times the charm! Pin number three!

New Pin

(https://pinterested-codemy.c9.io/pins - with a few pins added)

All your pins are listed on the pins page in a simple table. But notice next to each
pin there are three links: "Show, Edit, Destroy". Those links do exactly what you
would think they would do.

Go ahead and play around with them a bit...I'll wait.

127

John Elder
THAT'S CRUD!

Before we move on, we need to discuss something that's very fundamental to web
development, and that's CRUD.

Create
Read
Update
Destroy

We've just generated a simple scaffold, but that tool is one of the most powerful
things you'll ever come across in web development. Why? Because that simple
scaffold has given us the tools and ability to handle CRUD (Create, Read, Update,
and Destroy).

You can see in our simple Pinterest app that we now have the ability to Create
something (a simple pin with description text). We can View that pin (Read it), we
can edit it (Update it), and we can delete it (Destroy it). CRUD.

So what?

Take a minute and think about every major website in the Internet. Don't they
pretty much all just do CRUD?

Think about Twitter...it's a massive website, but when you get right down to it,
when you use Twitter, you're only really Creating a Tweet, Reading a Tweet,
Updating a Tweet, or Deleting a Tweet...CRUD!

What about Facebook? Create a Facebook post, Read a Facebook Post, Update a
Facebook Post, or Delete a Facebook Post...CRUD!

Youtube? Create a Video Post, Watch a Video (read), Updating one of your
videos, or Delete a Video...CRUD!
128

Codemy.com

What about a Blog? You create a blog post, read a blog post, update your blog
post, or delete your blog post...CRUD!

Everything, and I mean everything basically just breaks down to CRUD. It's one of
the fundamental building blocks of the Internet and we just learned how to handle
it with one simple command in Rails.

One simple command and Rails handles everything about it! It's really pretty
amazing, and it gives you an incredible tool that you can use to build just about
anything online.

Sure, our simple pin description isn't much right now...but we'll tinker with it a bit
and make it more impressive (adding images etc).

Right now, I just want you to focus on CRUD, and how the Rails g Scaffold
command has given you the ability to create CRUD. We have more to learn, but
this is the first step and it's a big one.

SCAFFOLD VIEWS AND CONTROLLER

Let's take a minute to look at some of the files that the 'rails g scaffold’ command
created. As I mentioned, you should have a new 'pins' folder in your /views/
directory. There should be six or seven files in that folder (some of which you can
ignore — like the json ones).

The other files are the pages that allow us to create pins (new.html.erb), edit pins
(edit.html.erb), show an individual pin (show.html.erb), and list all the pins
(index.html.erb).

If you take a look at those files, you'll notice that most of them call a partial file to
handle the actual form used to create a pin or edit the pin:

129

John Elder

1 <%= render 'form' %>
2

That form partial file is also located in the pins folder, and is named
_form.html.erb

You can go through those files (both the views and the form partial) and play with
the look of them. I'll leave it as homework for you to make them look the same as
our Devise views (use the Bootstrap 'form' class and 'panel' class like we used for
our Devise views).

Besides the views, the 'rails g scaffold' command also created a new controller to
handle all of this CRUD stuff. The controller is located in
/app/controllers/pins_controller.rb and should look like this:

lapp/controllers/pins_controller.rb

1 class PinsController < ApplicationController
2 before_action :set_pin, only: [:show, :edit, :update, :destroy]
3

4 respond_to :html

5

6 def index

7 @pins = Pin.all

8 respond_with(@pins)

9 end

10

11 def show

12 respond_with(@pin)

13 end

14

15 def new

16 @pin =Pin.new
17 respond_with(@pin)
130

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

end

def edit
end

def create
@pin = Pin.new(pin_params)
@pin.save
respond_with(@pin)

end

def update
@pin.update(pin_params)
respond_with(@pin)

end
def destroy
@pin.destroy
respond_with(@pin)
end
private
def set_pin
@pin = Pin.find(params[:id])
end

def pin_params
params.require(:pin).permit(:description)
end

end

Codemy.com

131

John Elder

That's quite a bit more stuff than our old home_controller.rb file that we created
back at the beginning of this book when we made our original index and about
page! But it makes sense that this file would be a little more complicated, since this
controller needs to handle all the CRUD stuff.

Take a look through this controller file. You don't need to understand everything
that's going on in there at this point...but you should get at least a small sense of
what's happening.

Look at the different 'def' sections. Notice how they sort of follow along with
CRUD? There's a 'def show' (Read from CRUD), there's a 'def new' and 'def create'
(Create from CRUD), there's a 'def edit' and 'def update' (Update from Crud), and
a 'def destroy' (Destroy from CRUD).

Apart from that; there's some stuff towards the bottom, private and 'def
pins_params' that we'll fiddle with later.

Like I said though, you don't really need to know what all this is doing at the
moment, but you need to have a sense of it and realize that this controller is
handling our CRUD stuff for us.

ADDED TABLE TO OUR DATABASE

Our database is getting more and more complicated. Earlier, all it did was handle
users signing up, logging in and out, and editing their profiles. Now it has to
handle all of the pins that people upload.

Luckily, Rails still handles all this database stuff for us behind the scenes, but we

can take a look at a sort of snapshot of what our database looks like by checking
out our database schema file, located at: /app/db/schema.rb

132

Codemy.com

You'll remember that the /app/db/ directory is where our migration files are
located, so it makes sense that this is where our schema.rb file is located.

Basically a schema.rb file is just a snapshot of our current database. You won't
need to ever do anything with this file (you won't need to edit it or anything), but
it's nice to take a quick peek at it from time to time. Let's do so now...

/app/db/schema.rb

1 ActiveRecord::Schema.define(version: 20141229144241) do
2

3 create_table "pins", force: true do It|

4 tstring "description"

5 t.datetime "created_at"

6 t.datetime "updated_at"

7 end

8

9

create_table "users", force: true do It
10 t.string "email", default: ", null: false
11 tstring "encrypted_password", default: ", null: false
12 tstring "reset_password_token"
13 t.datetime "reset_password_sent_at"
14 t.datetime "remember_created_at"
15 tinteger "sign_in_count", default: 0, null: false
16 t.datetime "current_sign_in_at"
17 t.datetime "last_sign_in_at"
18 t.string "current_sign_in_ip"
19 tstring "last_sign_in_ip"
20 t.datetime "created_at"
21 t.datetime "updated_at"
22 end
23
24 add_index "users", ['email"], name: "index_users_on_email", unique: true
25 add_index "users", ["reset_password_token"], name:
26 "index_users_on_reset_password_token", unique: true

133

John Elder

27
28 end
29

You'll notice that there are two tables in our database; one to handle all the Devise
things ("users"), and one to handle all our pins stuff ("pins").

You'll also notice that both tables have timestamp information that was created
automatically when we created the table (Rails does that for us — for instance, in
our "pins" table we only wanted it to add a description:string, but our pins table
also has a t.datetime "created_at" column and a t.datetime "updated_at" column).

Like I said, there's nothing we need to do here, I just wanted to make you aware of
the schema.rb file. You should get into the habit of taking a look at that file every
time you make any sort of change to the database (anytime you push a migration,
for instance)... just to keep an eye on things.

CHECK OUT OUR PINS INDEX PAGE

Finally, let's take a moment to check out our main pins index page. This is going
to become one of the most important files of our site, because this is where we're
going to do most of the work to make our site look and feel like pinterest. Let's
take a look at what we have there so far:

lapplviews/pins/index.html.erb
<h1>Listing pins</h1>

<thead>

1
2
3 <table>
4
5 <tr>

134

Codemy.com

6 <th>Description</th>

7 <th colspan="3"></th>

8 </tr>

9 </thead>

10

11 <tbody>

12 <% @pins.each do Ipin| %>

13 <tr>

14 <td><%= pin.description %></td>

15 <td><%= link_to 'Show', pin %></td>

16 <td><%= link_to 'Edit’, edit_pin_path(pin) %></td>
17 <td><%= link_to 'Destroy’, pin, method: :delete, data: { confirm: 'Are you
18 sure?' } %></td>

19 </tr>

20 <% end %>
21 </tbody>
22 </table>

24

26 <%= link_to 'New Pin', new_pin_path %>

You'll notice the main layout of the page is a basic HTML table. If you don't have
a lot of experience with HTML and aren't familiar with tables, don't worry. We
won't be keeping the table (eventually we'll remove the table and use Bootstrap
panels to make each 'pin' look like a pinterest pin).

The most interesting stuff happens on lines 12-20. Those are the lines that call into
our database, look up our pins table, and output each pin onto the screen.

135

John Elder

Line 12 is a basic Ruby loop <% @pins.each do |pinl %> that says "for each pin in
our pins table, do something"; and the 'something' are lines 14-18 (ie output the
pin.description and links to show, edit, or destroy the pin).

The reference to pin.description is the description:string that our 'rails g scaffold
pins description:string" command generated (ie each pin's description).

We'll play with this file again soon; when we finally add images into the mix.

UPDATING THE NAVBAR

Now that we have a few more pages in our site, it's time to update the Navbar
with links to those pages; specifically the pins index page and the 'add new' pin

page:

https://pinterested-codemy.c9.io/pins (or whatever your URL is)
https://pinterested-codemy.c9.io/pins/new

We don't mind showing the world our pins index page, but we probably only
want people who are signed in to be able to directly access the "add new" pin page
(in the next chapter we'll get into authentication). Remember how we split the
Navbar up based on whether a user is signed in or not?

lapplviews/home/_header.html.erb
1 <nav class="navbar navbar-default" role="navigation">
2 <div class="container">
<!-- Brand and toggle get grouped for better mobile display -->
<div class="navbar-header">
<button type="button" class="navbar-toggle collapsed" data-

toggle="collapse" data-target="#bs-example-navbar-collapse-1">

Toggle navigation

0 N O U = W

136

10
11
12
13
14
15
16
17
18
19
20
21
22
23
23
24
25
26
27
28
29
30
31
32

Codemy.com

</button>
<%= link_to 'Pinterested’, root_path, class: navbar-brand' %>
</div>

<!-- Collect the nav links, forms, and other content for toggling -->
<div class="collapse navbar-collapse" id="bs-example-navbar-collapse-1">
<ul class="nav navbar-nav navbar-right">
<%= link_to 'Home', root_path %>
<%= link_to 'About Me', home_about_path %>
<%-= link_to 'List Pins', pins_path %>
<% if user_signed_in? %>
<%= link_to 'Edit Profile’, edit_user_registration_path %>
<%=link_to 'Add Pin', new_pin_path %>

<%=link_to 'Logout’, destroy_user_session_path, method: :delete %></1i>

<% else %>
<%= link_to "Login", new_user_session_path %>
<%= link_to "Join", new_user_registration_path %>

<% end %>

</div><!-- / navbar-collapse -->
</div><!-- /.container-fluid -->
</nav>

137

John Elder

We've done a lot in this chapter! Be sure to save your changes:

$ gitadd .

$ git commit —am 'added pins scaffold, updated navbar'
$ git push

$ git push heroku master

$ heroku run rake db:migrate

N Ul = W IN -

Be sure to run the rake db:migrate command on Heroku since we added a new
element to our database (the pins table).

In the next chapter we'll look at Authentication and set up safeguards that only
allow signed-in users to add pins to our database.

138

Codemy.com

CHAPTER SIX

AUTHENTICATING USERS

In the last chapter we laid down the foundation of our pins scaffold. Now people
have the ability to upload basic pins and describe them.

But there's a problem. Right now, anyone can create a pin. Not only that, but
anyone can edit a pin or delete a pin...even if they didn't create that pin
themselves!

That's definitely not going to fly. We need to set things up so that only people
who have signed-up and signed-in can create pins, and only people who created a
specific pin should have the ability to edit it or delete it.

How do we do this? The first part is easy (only giving people who have signed-in
the ability to create pins). The second part is a little trickier; we need to "associate"
a user with a pin.

RAILS ASSOCIATIONS

Right now our app has two models (in the database)...one for 'users' and one for
‘pins’. When we looked at our database schema in the last chapter, you saw how
each of those is a separate table in our database.

The thing is; we now want to associate those two models. We want to be able to

keep track of which pins belong to which user. Luckily Rails makes this pretty
easy with something called "Associations".

139

John Elder

In Rails, there are a few basic types of associations available to you:
- belongs_to

- has_one

- has_many

- has_many :through

- has_one :through
- has_and_belongs_to_many

Each of these associations can refer to a model in our app (in our case, let's look at
our pins model). We mainly want to focus on the first three:

A pin can “belong to” a user.

A user can "have one” pin.

A user can "have many” pins.

The other three listed above are for more complicated associations that we don't
really need to understand for our simple app. But you can read a great rails guide

about each of these associations at:

http://guides.rubyonrails.org/association_basics.html

USING ASSOCIATIONS

Setting up associations is fairly easy. In our app we need to use the "belongs_to"
and the "has_many" associations. We don't need to use the "has_one" association
because we want our users to be able to have as many pins as they want, and the
has_many allows one or more than one.

140

Codemy.com

WARNING - WARNING - WARNING!

Before we go forward, it's important to delete any pins you've already created;
both on the development version and the Heroku version of your app. Why?
Because we're going to start associating pins with users, and any pins you've
already created have not been associated with a user and will throw up errors after
we set our associations.

So delete all the pins that are currently listed on your pins index page. There's a
way to associate our old pins with users later using the Rails Console, but it's
easier to just delete them now.

It's also probably a good idea to close your user account on the site. Log in, click
the 'edit profile' link at the top of the screen, and click the "cancel my account"
button at the bottom of the page.

CREATING ASSOCIATIONS

Using associations is a two-step process. We need to specify the associations in
each of our models at /app/models/pin.rb and /app/models/user.rb but we also
need to add a new column to our pins table (in our database) to keep track of what
pins belong to what user.

Let's do that first.
We can edit a table by creating a migration and pushing that migration to the

database with the rake db:migrate command. In this case, we want to add a
user_id column to our pins table and make it an integer data type.

141

John Elder
To do that we issue this command:
1 $ rails generate migration add_user_id_to_pins user_id:integer:index

2

This command looks familiar but seems a little different. The different part is the
add_user_id_to_pins bit. It looks a little weird but that's how you tell Rails to add
a column to a table (in this case, we're adding a user_id to the pins table).

The last bit looks similar to when we designated description:string for our original
pins table, but in this case we're creating a user_id and making it an integer
(number).

But we've also tacked on an :index to the end. An index in database-world just
makes a thing easier and faster to look up. It speeds up the lookup process and
you don't really need to know more than that for now.

So run that command, and then rake the database:

1 $ rake db:migrate

2

(be sure to remember to run 'heroku run rake db:migrate' later when you push all

these changes up to Heroku).

If you take a look at our database schema file now, you'll notice that our pins table
now has a user_id with integer data type.

The next thing to do is actually specify our associations. We do that in our two
/app/models/ files (pin.rb and user.rb).

142

Codemy.com

lapp/models/pin.rb

1 class Pin < ActiveRecord::Base
2 belongs_to :user

3 end

4

lapp/models/user.rb

1 class User < ActiveRecord::Base

2 # Include default devise modules. Others available are:

3 #:confirmable, :lockable, :timeoutable and :omniauthable
4 devise :database_authenticatable, :registerable,

5 recoverable, :rememberable, :trackable, :validatable

6 has_many :pins

7 end

8

You see that adding associations is as simple as adding one line to each model.
Piece of cake!

MUST BE SIGNED IN TO CREATE PINS

Finally, we mentioned at the beginning of this chapter that we only want people
who are signed in to be able to create pins.

This is easily accomplished by tweaking our pins controller file, and adding a
couple of lines to the top of it:

143

John Elder

lapp/controllers/pins_controller.rb

1 class PinsController < ApplicationController

2 before_action :set_pin, only: [:show, :edit, :update, :destroy]
3 before_action :authenticate_user!, except: [:index, :show]
4 before_action :correct_user, only: [:edit, :update, :destroy]
5
6
7

Lines 3 and 4 are what we're looking at...

Line three authenticates a user for every page of our app (relating to pins) except
the index and show pages. So a user doesn't have to be logged in to view our pins
index page or an individual pin.

Line four makes sure that only the correct user can edit, update, or destroy a pin.
But we need to specify what is a correct user. We'll do that at the very bottom of
this same file, before the final end statement:

lapp/controllers/pins_controller.rb

def correct_user

@pin = current_user.pins.find_by(id: params|[:id])

redirect_to pins_path, notice: "Not authorized to edit this pin" if @pin.nil?
end

N O UG W N =

Notice line four mentions current_user; that is something called a 'Devise Helper'
(something that Devise handles for us). Basically it allows us to reference who the
current logged in user is.

144

Codemy.com

Whenever someone creates a new pin, we need to be able to let our database know
that specific pin belongs to that specific user, and we'll use the current_user bit we
just saw to do that.

So basically we need to update the 'def new' section and the 'def create' section of
our pins controller and replace Pin.new with current_user.pins.build in each of
them.

So here's what our new pins controller looks like:

lapp/controllers/pins_controller.rb

class PinsController < ApplicationController

before_action :set_pin, only: [:show, :edit, :update, :destroy]
before_action :authenticate_user!, except: [:index, :show]

before_action :correct_user, only: [:edit, :update, :destroy]
respond_to :html

def index
@pins = Pin.all

10 end

11

12 def show

13 end

14

15 defnew

16 @pin = current_user.pins.build

17 end

18

19 def edit

20 end

21

22 def create

23 @pin = current_user.pins.build(pin_params)

1
2
3
4
5
6
7
8
9

145

John Elder

24 if @pin.save

25 redirect_to @pin, notice: Pin was successfully created.'
26 else

27 render action: ‘new’

28 end

29 end

30

31 def update
32 if @pin.update(pin_params)

33 redirect_to @pin, notice: 'Pin was successfully updated.'
34 else

35 render action: 'edit’

36 end

37 end

38

39 def destroy
40 @pin.destroy

41 redirect_to pins_url

42 end
43
44 private

45 def set_pin
46 @pin = Pin.find(params[:id])

47 end

48

49 def pin_params

50 params.require(:pin).permit(:description)
51 end

52

53 def correct_user

54 @pin = current_user.pins.find_by(id: params[:id])

55 redirect_to pins_path, notice: "Not authorized to edit this pin" if @pin.nil?
56 end

57

146

Codemy.com

58 end
59

You'll see that I also added a couple of lines to output a flash message notice when
a pin is updated or created.

We're almost done. The heavy lifting is over, but we still need to make a cosmetic
change or two to our website.

Before we continue be sure to close your web server and restart your app.
Otherwise you'll probably get an error.

Once you've done that, create a new user account (since you deleted yours at the
beginning of this chapter), and log back in. Then check out our pins index page:

https://pinterested-codemy.c9.io/pins (or whatever your URL is)

That page should be blank since we deleted all of our pins, but go ahead and add
another pin. Notice next to the pin we still have the "show, edit, destroy" links.

That’s fine because you are currently logged in and those pins are yours...but we
don't really want the edit and destroy links to show up if a person isn't logged in
or doesn't own that particular pin.

It's sort of a moot point right now. To see what I mean, log out and then check out

the pins page. Try to click the edit or destroy link and you'll get a message saying
that you need to log in to perform those operations.

147

John Elder

<« C {3 httpsy/pinterested-codemy.c9.io/users/sign_in w

Pinterested Home About Me List Pins Login Join

You need to sign in or sign up before continuing

Login

Email
Password

Remember me

Sign up
Forgot your password?

(After clicking on 'add new’, 'edit’, or 'destroy' pin link while logged out)

So strictly speaking, our app is locked down now and authenticating users
appropriately. But still...it's kind of silly to show those links to people who can't
actually use them.

Luckily we can change that pretty easily by adding a simple Ruby 'If Statement":

lapplviews/pins/index.html.erb

<% @pins.each do | pin| %>
<tr>

<td><%= pin.description %></td>

<td><%-= link_to 'Show', pin %></td>

<% if pin.user == current_user %>
<td><%=link_to 'Edit’, edit_pin_path(pin) %></td>
<td><%-= link_to 'Destroy’, pin, method: :delete, data: { confirm: 'Are you
sure?' } %></td>

O 0 N\ O O i W N -

—_
(@)

148

Codemy.com

11 <0/o end 0/o>

11 <[tr>
12 <% end %>
13

And you can do the same thing to the show.html.erb file with a slight variation:

lapplviews/pins/show.html.erb

<% if @pin.user == current_user %>

<%= link_to 'Edit', edit_pin_path(@pin) %>
<% end %>

<%= link_to 'Back’, pins_path %>

N O U W N -

Those 'If' statements say that 'if' the user that created that pin is the same as our
current user, show the edit links, otherwise don't.

That will make sure that only the appropriate people can see the links to edit the
pin and will generally make our app less cluttered. There's no reason to add links
to a page that a person doesn’t have the ability to use anyway.

The reason we slapped an @ sign in fron of pin.user in our show.html.erb file and
not in our index.html.erb file is because the index.html.erb file had already called
@pin on line 3 (for the loop). The show.html.erb file hadn't called @pins anywhere
so we need to do that in order to access the database table.

149

John Elder

SUMMING UP

This was a pretty intense chapter, probably the most intense chapter of the entire
book. It's ok if you didn't quite understand everything that we did...you'll
understand it eventually.

The goal at this point is to know that we did these things, and to be aware of the
basic concepts that accompany each thing. Messing with the controller is always
tricky when you're first learning Rails, and Associations are an even more
advanced topic.

Don't worry; it all gets easier from here!

In the next chapter we'll start adding images to the mix. It should be much more
fun!

Before we go on though, be sure to save your work:

$ gitadd .

$ git commit —am "Associated pins with users and authenticated users"
$ git push

$ git push heroku master

$ heroku run rake db:migrate

N Ul = LN -

And you should probably delete any pins that have been created as well because
we're going to be changing them to show images in the next chapter.

150

Codemy.com

CHAPTER SEVEN

UPLOADING IMAGES TO OUR APP WITH PAPERCLIP

The worst is over! Now we just need to add the ability to upload images, save
those images somewhere, style the output to make it look more like Pinterest, and
we're basically done!

To handle images, we're going to be working with a few different things; namely
ImageMagick, Paperclip, and AmazonS3.

ImageMagick is an open source command line image processing tool. It does all
kinds of things behind the scenes like resize images, handle file formats, and all
kinds of tricky things like that. It's important because people are going to be
uploading images of all different sizes and shapes and we need to be able to resize
them into a standard format automatically.

ImageMagick is not an actual Gem, we'll need to download the program into our
development environment through the terminal. No worries though, it's easy.

Paperclip is a Ruby Gem that deals with uploading images. Technically it allows
for image file attachments to be added to our database. We'll add it like we add all

Gems.

Finally, we'll be storing our production level images on Amazon S3 and NOT on
our Heroku Postgres database.

Why?
Paperclip has no problem uploading images to postgres databases, but Heroku has

a problem with it. Image files take up a LOT of space, and Heroku doesn't want to
be in the business of storing gazillions of images in their databases.

151

John Elder

They'll allow you to upload images into your postgres database, but then in an
hour or so those images will be automatically deleted.

So we need to store them somewhere else. Amazon S3 is a simple storage
provider that allows you to easily store images in the cloud.

*NOTE** AmazonS3 does cost money...but it's not much money. For our simple
app with just a little traffic and not many images stored, you can expect to pay

pennies per month.

Personally, I store a TON of stuff on AmazonS3 and last month my bill was like
$1.29... It's cheap.

You don't have to use Amazon S3 for this project if you just don't want to spend
the pennies, but I highly recommend that you do because S3 is an industry
standard and chances are, you'll have to use them some day for something, and

you might as well learn how to now.

But we'll get into that later on in the chapter, first — let's get into ImageMagick.

INSTALLING IMAGEMAGICK

Like I said, ImageMagick is not a Gem, in fact it's not even really a Rails thing. It

works with all sorts of web development tools.

To see whether or not ImageMagick is already installed in your development
environment, punch this into the terminal:

1 $identify
2

152

Codemy.com

If you don't have ImageMagick installed already (and you probably don't), you'll
get an error message that says something like "Command not found".

So let's install ImageMagick:
1 $sudo apt-get install imagemagick

2

Apt-get is a unix/linux command that downloads and installs software from the
command line. It might prompt you; asking if you would like to continue or not.
Type yes and hit enter.

Now you can run the identify command and it should output a bunch of stuff.
The stuff isn't important, it just tells you that ImageMagick was successfully

installed and is ready to go.

That's all there is to it.

INSTALLING PAPERCLIP

Paperclip is a Ruby Gem, so we can head over to RubyGems.org and search for
paperclip. As of this book, paperclip is on version 4.2.1, so copy that and add it to
our Gemfile:

/Gemfile

gem 'paperclip’, '~>4.2.1'

NGl = W N~

153

John Elder

Save that and then run bundle install as always.

1 $ bundle install
2

As you might expect, there are a few more things we need to do in order to
properly install and use paperclip. We need to make a few changes to the form on
our 'add new' pins page, but we also need to make a change to our pins model:

lapp/models/pin.rb

1 class Pin < ActiveRecord::Base

2 belongs_to :user

3 has_attached_file :image, :styles => { :medium => "300x300>", :thumb => "100x100>" }
validates_attachment_content_type :image, :content_type => \AimageV/.*\Z/

4
5 end
6

Line 3 and 4 allow our pin model to allow an attached image file, and they go on to
specify those images.

Checkout line 3...Notice how it designates a size of medium (300x300) and a size
of thumb (100x100). This will allow us to resize images and show them in those
standard sizes just by calling :medium or :thumb on our views pages.

Line 4 spells out the type of images that are allowed (jpg, png, bmp, gif, etc).
Basically line 4 allows all image types to be uploaded but you could fiddle with
that line if, for instance, you only wanted to allow jpg's.

Now we need to create a migration to add a column for images to our pins table:
1 $ rails generate paperclip pin image

2
154

Codemy.com

And as always, we need to rake the database:

1 $ rake db:migrate
2

And be sure to do the same thing to Heroku when you finally push these changes
up to Heroku (heroku run rake db:migrate).

Now, if you take a look at our database Schema file, you'll notice several references
to images in the Pins table.

Finally, we need to make a small change to our pins_controller.rb file to allow
images to pass as an accepted parameter on our forms.

[app/controllers/pins_controller.rb

1 .

2 .

3 def pin_params

4 params.require(:pin).permit(:description, :image)
5 end

6

You'll find that code down towards the end of the file, and we just slapped a
comma and :image to the end of it. That whole line means basically "allow people
to fill out the form to add a pin by adding a description and uploading an image".

155

John Elder

CHANGING OUR WEB FORM TO ALLOW IMAGES

Now we've got the functionality to upload images, but if you go to our 'add new
pins page, you'll notice that there's no form field to actually upload an image.
Let's add that now:

lapplviews/pins/_form.html.erb
1 <%= form_for @pin, html: { multipart: true } do Ifl %>

3

4

5 <div class="form-group">

6 <%=flabel :image %>

7 <%=ffile_field :image, class: "form-control" %>
8 </div>

9

You'll notice we did two things here. First, we changed the very first line of the
file from:

1 <%= form_for(@pin) do If| %>

2

To...

1 <%= form_for @pin, html: { multipart: true } do Il %>

2

156

Codemy.com

Basically, we just added a bit that tells our form to allow multipart stuff (ie
images).

Next, we added an actual field that allows people to select files from their own
computers to upload. Now if we save this file and head over to our web browser:

https://pinterested-codemy.c9.io/pins/new (or whatever your URL is)

You should see this:

g =

€« C' { httpsy/pinterested-codemy.c9.io/pins/new

Pinterested Home AboutMe LisiPins AddPin EditProfle Logout

New Pin

Description

Image

Choose File | No file chosen

Back

(https://pinterested-codemy.c9.io/pins/new - with new Image Field)

Give it a try, you should be able to upload images no problem...
Except that after you upload the images, nothing happens. If you return to our

pins index page, there won't be any images listed. We have to update our views to
actually SHOW the images now!

157

John Elder

To do that, we would call something like this:

1 <%=image_tag pin.image.url(:medium) %>

2

Notice the :medium? That will output our 300x300 image. You could also have
chosen :thumb instead and it will output our 100x100 image.

So let's add that tag to our pins index page and our pins show page:

lapplviews/pins/index.html.erb
1 <hl>Listing pins</h1>

2

3 <table>

4 <thead>

5 <tr>

6 <th>Image</th>

7 <th>Description</th>

8 <th colspan="3"></th>

9 <tr>

10 </thead>

11

12 <tbody>

13 <% @pins.each do |pin| %>

14 <tr>

15 <td><%=image_tag pin.image.url(:medium) %></td>
16 <td><%= pin.description %></td>

17 <td><%-= link_to 'Show’, pin %></td>

18 <td><%-= link_to 'Edit’, edit_pin_path(pin) %></td>

19 <td><%=link_to 'Destroy’, pin, method: :delete, data: { confirm: 'Are you
20 sure?' } %></td>

21 </tr>

22 <% end %>
158

Codemy.com

23 </tbody>

24 </table>

25

26

27

28 <%= link_to 'New Pin', new_pin_path %>
29

That will output our image on the pins index page, but we still need to update our
pins show page:

lapplviews/pins/show.html.erb
<p id="notice"><%= notice %></p>

1

2

3 <%-=image_tag @pin.image.url(:medium) %>

4 Description:
5 <%= @pin.description %>
6

7

8

9

<%= link_to 'Edit’, edit_pin_path(@pin) %> |

<%= link_to 'Back’, pins_path %>
10

Reload and check it out...if images aren't appearing, then restart your server and
hit reload again. That should do the trick.

Check out those two changes, you'll notice that we added a slightly different
reference to our image on the pins index page than on the pins show page.

The pins index page image reference (line 15) has no @ sign, and the one on our
pins show page (line 3) says @pin.image.url.

159

John Elder

What gives?

You'll notice on the pins index page, line 13 already references @pins
1 <% @pins.each do |pin| %>

2

...and is executing a loop within @pins.

Our pins show page has no loop calling @pins anywhere...so when we call our
image, we need to reference @pins.

Let's save our work up until now:

$ gitadd .

$ git commit —am 'added imagemagick and paperclip, updated pins views'
$ git push

$ git push heroku master

$ heroku run rake db:migrate

N Ul = W N -

160

Codemy.com

SAVING IMAGES ON AMAZON S3

Now it's time to set up and configure Amazon S3. If you don't have an account at
Amazon AWS, head over to aws.amazon.com and sign up for a free account.
They'll ask for your credit card, but you only get charged for bandwidth and like I
said earlier, it's only going to be pennies a month for our simple app.

Like most things in Rails, there's a Gem to handle AmazonS3 and it is called:
"aws-sdk". So head over to RubyGems.org and search for it. As of this book's
publication, aws-sdk is on version 1.60.2 so copy the reference to that and add it to
our Gemfile:

/Gemfile

1

2 .

3 gem 'aws-sdk’, '~>1.60.2'
4

And as always, we need to run the bundle install command:

1 $ bundle install
2

We need to make a couple more changes in order to properly configure this gem:

161

John Elder

lapp/config/environments/production.rb

1 .

2 .

3 config.paperclip_defaults = {

4 :storage =>:s3,

5 :83_credentials => {

6 :bucket =>ENV['AWS_BUCKET],

7 access_key_id => ENV['AWS_ACCESS_KEY_ID'],
8 :secret_access_key => ENV['AWS_SECRET_ACCESS_KEY']
9 |

10 }

11 end

12

You'll remember this file from the beginning of the book when we added our
Heroku URL. This is the file that gives special instructions for our production
environment (ie Heroku).

It makes sense, since we're adding images to Amazon S3 in the production
environment, we would have to add a little something to this file to make our app
aware of it.

Let's look at the code we added. Basically we are telling paperclip to store images
at S3. Now we need three things from S3: bucket name, access_key_id, and
secret_access_key.

Let's look at each of these three things.

First, Amazon S3 uses a directory structure to store your files, and it names those

directories "buckets". So when you log into S3, you'll create a bucket to store your
files in. Our app needs to know the name of that bucket, hence the reference here.

162

Codemy.com

Next, Amazon authenticates our app by checking an access key id and a secret
access key. Think of them as your user name and password to gain access to
Amazon S3.

You'll notice that the code we pasted in here doesn't actually HAVE the bucket
name or the access key id or the secret access key listed. Why is that? Doesn't
Amazon need to know those things?

Yes it does, but we don't want to type them in here. Why? Because sometimes
people host their version control source files on Github.

Remember at the beginning of the book we chose to use BitBucket to host our
version control because BitBucket is private and Github is public?

If you DID happen to use Github, all of your source code would be open for
anyone to see...and if we typed in our Amazon secret keys here, people would be
able to see them...and that's baaaad.

Rails gets around this problem by not making you type those things right here.
Instead it uses environmental variables, designated by ENV['stuff here'], and those
environmental variables keep your information secret.

We actually won't type in our bucket, access key, or secret key anywhere into our
app, instead we'll type them directly into Heroku using a special command.
Heroku will keep them on file, and whenever our program needs them, it will call
the environmental variables which will then swap out the actual keys and codes
from Heroku.

Confused? It's not too bad.
Before we type those three things into Heroku, we need to GET those three things.

That means you need to log into Amazon AWS and find them. So let's do that
now.

163

John Elder

§ AWS v

Services

Amazon Web Services

Compute
EC2

Virtual Servers in the Cloud

Lambda 77=
Run Code in Response to Events

Storage & Content Delivery

L
Scalable Storage in the Cloud
. Storage Gateway

Integrates On-Premises IT Environments with
Cloud Storage

Glacier
Archive Storage in the Cloud

o CloudFront
wg® Global Content Delivery Network

Database
. RDS
MySQL, Postgres, Oracle, SOL Server, and

Amazon Aurora

DynamoDB
Predictable and Scalable NoSQL Data Store

< ElastiCache
> In-Memory Cache

Redshift
Managed Petabyte-Scale Data Warehouse Service

Networking

s VPC
"W |solated Cloud Resources

+ Direct Connect
== Dedicated Network Connection to AWS

Administration & Security

Directory Service

Managed Directories in the Cloud
Identity & Access Management
Access Control and Key Management
Trusted Advisor

AWS Cloud Optimization Expert
CloudTrail

User Activity and Change Tracking
Config °R=
Resource Configurations and Inventory

CloudWatch

Resource and Appication Monitoring

™ & d ~H

Deployment & Management

.‘. Elastic Beanstalk
AWS Appication Container
OpsWorks
DevOps Application Management Service
CloudFormation
Templated AWS Resource Crealion

CodeDeploy

Automated Deployments

Analytics
EMR

Managed Hadoop Frameviork
Kinesis
Realtime Processing of Streaming Big Data

Data Pipeline
Orchestration for Data-Driven Workflows

op ¢ &

Application Services
sQs

Message Queue Service

u“ SWF
Workflow Service for Coordinating Application
Components

. AppStream
Low Latency Application Streaming

Elastic Transcoder
Easy-to-use Scalable Media Transcoding

SE!
Email Sending Service

CloudSearch

Managed Search Service
Mobile Services

F Cognito
.,l User Identity and App Data Synchronization

=== [Viobile Analytics
Understand App Usage Data at Scale

. SNS
Push Notfication Service

Enterprise Applications

@ WorkSpaces
Deskiops in the Cloud

Zocalo
Secure Enterprise Storage and Sharing Service

John Elder | N. Virginia v Support v

Additional Resources

Getting Started

See our documentation to get started
and leam more about how to use our
services

AWS Console Mobile App

View your resources on the go with our
AWS Console mobile app. available
from Amazon Appstore. Google Play
oriTunes

AWS Marketplace

Find and buy software, launch with
1-Click and pay by the hour.

Service Health

@ Al services operating normally.

Updated: Jan 01 2015 15:37:00 GMT-0600
Service Health Dashboard

Set Start Page

Cansole Home v

(Amazon AWS Console Screen)

Let's get our Bucket name first. From the Amazon Console, click the S3 link and
then the "Create Bucket" link on the next screen.

164

Codemy.com

< C' B https://consale.aws.amazon.com/s3/nome?region = us-west-2#

W# AWS ~ Services v John Eider v Global ~ Support ~

Create Bucket Actions v None Properties Transfers c’

All Buckets

Name L
[G npinterested4141 | Create a Bucket - Select a Bucket Name and Region

A bucket is a container for objects stored in Amazon 33 When cre

iting & bucket. you can choose a
Region to optimize for latency, minimize costs. or address regul reguirements. For more information m of the page o
regarding bucket naming conventions, please visit the Amazon 53 doc

umentation

Bucket Name:

Region: Oregon

Set Up Logging > m Cancel

(Amazon AWS Create Bucket Screen)

From the screen that pops up, name your bucket. A Bucket must be unique so
keep trying till you pick a unique one...something like pinterested99 or some
other number.

For region, select "US Standard" even if you're outside the US.

Next you'll be in the S3 bucket area, and you should see your newly created
bucket. Now we need to set the permissions so that anyone can upload and view
images in your bucket.

Right-click on your bucket name and select "properties" and a panel should pop
up on the right-hand side of the screen. Next click on "Permissions", then click the
little green plus sign to "add more permissions”. Click the drop down box and
select "Everyone", then click the tick marks next to all the listed permissions (list,
upload/delete, view permissions, edit permissions).

165

John Elder

€« C' | @ https://console.aws.amazon.com/s3/home?region =us-west-2#

N AWS ~

Services v | Edit v

Create Bucket |13

All Buckets
Name

[pinterested4141

© 2008 - 2015, Amazon Web Services, Inc. or its affiliates. Al rights reserved.

Privacy Palicy

John Elder v Global v Support v

None Properties Transfers
Bucket: pinterested4141 X
Bucket: pinterested4141
Region: US Standard
Creation Date! Tue Dec 09 10:19:13 GMT-500 2014
Owner: Me
~ Permissions
Grantee: john I List (¢ Upload/Delete & View Permissions (¢! %
Edit Permissions
Grantee: |[Everyone #! List ¥ Upload/Delete ¥ View Permissions [+ X

Edit Permissions

@ Add more permissions (5 Add bucket policy [Z Add CORS Configuration

m Cancel

+ Static Website Hosting

+ Logging

Terms of Use

Feedback

(Amazon AWS — Set Bucket Permissions)

Finally, click the "Save" button to save your new permissions. Your bucket is now
ready to go, just remember the name (or write it down so you remember it).

OBTAINING AMAZON ACCESS AND SECRET KEYS

Now we just need to get a hold of an access key and secret key. If you just created
a new Amazon AWS account, we'll need to do a couple of different things. If
you're using an older AWS account that has already issued keys in the past, you

can skip part of this.

If this is your first time...

166

Codemy.com

Click on your name in the upper right-hand corner of the Amazon screen, and
from the drop-down list that appears, select "Security Credentials".

Next, click on the "Create individual IAM users" link there in the middle of the
screen. If you've already created an individual IAM user in the past, you don't
have to do it again but I'm assuming this is your first time.

Click the "Manage Users" button that drops down.

On the next screen, click the big blue "Create New Users" button at the top of the
screen.

Type in your name in one of the boxes, make sure the "generate access key for each
user" box is clicked, then hit the blue "Create" button at the bottom of the page.

A screen will pop up saying that this is the last time you'll be able to get your
secret key for this user, and there's a link that you can click to get the key. Click
the link and copy the access key id and secret key. Save them somewhere.

Now you might think these are the access key id and secret access key that we
need to enter into Heroku, but you'd be wrong.

For some reason we need to go through the whole process again to generate a new
access key id and secret access key for our app. Don't ask me, I don't know why
Amazon works the way it does...

Go ahead and click on your name at the top right-hand corner of the screen one
more time, and select the "Security Credentials" link again.

This time, the screen that pops up will look a little different. I guess because it's no
longer your first time...*shrugs*

If a box pops up asking you to either "Continue to Security Credentials" or "Get
Started with IAM Users", select the security credentials option.

167

John Elder

NOW, we'll see a link for "Access Keys (Access Key ID and Secret Access Key)"
which is exactly what we want; click it.

€« c g https://console.aws.amazon.com/iam/home?region=us-west-2#security_credentia =

W# AWS v Services v Edit v John Elder + Global + Support +

Dashboard

« Your Security Credentials

Use this page to manage the credentials for your AWS account. To manage credentials for AWS Identity and Access Management (IAM) users, use the 1AM Console

Groups To learn more about the types of AWS credentials and how they're used. see AWS Security Credentials in AWS General Reference
Users + Password
Roles

Multi-Factor Authentication (MFA)

Identity Provid
ety Providers Access Keys (Access Key ID and Secret Access Key)

Password Policy

Credential Report

+
+
+ CloudFront Key Pairs
+ X.509 Certificates
+

Encryption Keys Account |dentifiers

(Amazon AWS — Security Credentials Screen)

A sort of dropdown will appear with a big blue button that says "Create New
Access Key"; click it.

A box should pop up telling you that your keys were created successfully. DON'T
CLOSE THAT BOX!!

You only get one chance to write down your keys, and this is that one chance. You
should see a little link at the bottom of that box that says something like: "Show
Access Key"; click it and your keys will appear. Copy them and paste them into a
notepad file or something.

Now it's time to add these guys to Heroku. There's a pretty good article about it
right here:

https://devcenter.heroku.com/articles/paperclip-s3

168

Codemy.com

You can read that if you want, but I'm going to walk you through it. All we need
to do is tell Heroku what our bucket name is, our access key id, and our secret
access key; and we've got all three of those so let's get right down to it:

1 $ heroku config:set S3_BUCKET_NAME=your_bucket_name

2 $ heroku config:set AWS_ACCESS_KEY_ID=your_access_key_id

3 $ heroku config:set AWS_SECRET_ACCESS_KEY=your_secret_access_key
4

Just replace the last little bit after the equal sign with your specific bucket name,
access_key_id, and secret_access_key.

To make sure that Heroku got all that you can run this command:

1 $ heroku config
2

And it will spit out all the info it has stored about your app. If you've done
everything correctly, you should see your bucket name, access key id, and secret
access key.

So let's save all this work and push to heroku and see if it worked!

$ git add .

$ git commit —am 'integrated AmazonS3 with Heroku'
$ git push

$ git push heroku master

$ heroku run rake db:migrate

N Ul = W N -

169

John Elder

Now the moment of truth...head over to your heroku app, log in, and try to
upload a pin. View the pin, is the image showing?

Right click on the image, and select "open image in new tab" to view the image
itself. Take a look at the URL of the image after it's been opened in a new browser
tab. Does the URL point to Amazon.com?

If so, everything went correctly. If not, something went wrong! But it should all
be ok.

Congratulations! You're 90% done with your app! All we need to do now is add
some jQuery touches and tinker with the look of our pins index page, and do a few

more tiny odds and ends that won't be difficult at all...and we'll be done!

In the next chapter we'll start with the look and feel and I'll introduce you to
jQuery Masonry...which is pretty cool.

170

Codemy.com

CHAPTER EIGHT

STYLING WITH JQUERY MASONRY AND ADDING PAGINATION

We're nearing the end of our project! All we need to do is tinker with the look and
feel of things, make some minor changes, and we'll be done.

Let's dive right in and get started!

First things first, our pins index page doesn't look like pinterest in any way shape
or form. We need to change that pronto.

What we want is for each pin to be square/rectangular in form with the image on
top, followed by the description below it. This sounds like a job for Bootstrap
panels to me! But first we need to do some other stuff...

Right now our pins index page is dominated by that ugly table. Let's get rid of all
traces of that table now, and we can get rid of the <h1> Listing pins</h1> tag too:

lapplviews/pins/index.html.erb

1 <% @pins.each do |pin| %>

2 <%= image_tag pin.image.url(:medium) %>
3 <%= pin.description %>

4 <%= link_to 'Show', pin %>

5 <% if pin.user == current_user %>

6 <%=link_to 'Edit', edit_pin_path(pin) %>
7 <%= link_to 'Destroy’, pin, method: :delete, data: { confirm: 'Are you
8 sure?' } %>

9 <% end %>

9 <% end %>

10

11 <%=link_to 'New Pin', new_pin_path %>

12

171

John Elder

I took out all traces of the table stuff. All the <td> and their corresponding </td>
tags, all the <tr> tags...everything table related. It didn't leave us with much left!

Now let's add some line breaks to get things looking a little better:

lapplviews/pins/index.html.erb

1 <% @pins.each do Ipin| %>

3 <%= image_tag pin.image.url(:medium) %>

5 <%= pin.description %>

7

9 <%= link_to 'Show', pin %>

10 <% if pin.user == current_user %>

11 <%= link_to 'Edit’, edit_pin_path(pin) %>

12 <%= link_to 'Destroy’, pin, method: :delete, data: { confirm: 'Are you
13 sure?' } %>

14 <% end %>

17 <% end %>

18

19 <%= link_to 'New Pin', new_pin_path %>

20

172

Codemy.com

€« c https://pinterested-codemy.c9.io/pins w5

>

Pinterested Home AboutMe ListPins AddPin Edit Profle Logout

This is a pin!
Show

Edit

Destroy

This is what | would call our second pin
Show

Edit

Destroy

(Pins Index Page Without Formatting)

And while we're at it, let's get rid of the "Show" link. Instead, let's make the image
itself clickable. All we have to do is modify line 3 above (the image tag).

1 <%= link_to image_tag(pin.image.url(:medium)), pin %>
2

So now our pins index page looks like this:

lapplviews/pins/index.html.erb

1 <% @pins.each do |pin| %>

2 <%= link_to image_tag(pin.image.url(:medium)), pin %>

3 <%= pin.description %>

4
5

<% if pin.user == current_user %>

173

John Elder

6 <%=link_to 'Edit’, edit_pin_path(pin) %>

7 <%=link_to 'Destroy’, pin, method: :delete, data: { confirm: 'Are you
8 sure?' } %>

9 <% end %>

10

11 <% end %>

12 <%=link_to 'New Pin', new_pin_path %>

So far so good; the pins look a little better, the only problem is that they scroll
vertically down the page instead of horizontally across the page.

And when you resize the page, we want the pins to move around in a sort of
animated way, just to add some cool effects to the site.

To do that, we're going to use something called jQuery Masonry. You can take a

look at it at: http://masonry.desandro.com/

€« € [masonry.desandro.com

Options Methods Events Appendix FAQ

Masonry

Cascading grid layout library

What is Masonry?

Masonry is a JavaScript grid layout library. It works by
placing elements in optimal position based on available
vertical space, sort of like a mason fitting stones in a wall.
You've probably seen it in use all over the Internet.

LAUNCH RESIZER

Install

D Download Getting started
masonty.pkgd. iQuery

imagesLoaded
MIT License

min.js
Download

these docs
@ Masonry on

GitHub

g
m

174

Codemy.com

As like most things in Rails, Masonry comes as a Gem, so head over to
RubyGems.org and search for masonry-rails and as of this book, the version
number is 0.2.4, so go ahead and copy the reference and add it to your Gemlfile.
We'll also add jquery-turbolinks while we're at it.

Gemfile

1.

2.

3 gem 'jquery-turbolinks'

4 gem 'masonry-rails’, '~> 0.2.4'
5

And as always, run bundle install to install it:

1 $ bundle install
2

While you're at RubyGems.org, click the "Documentation” link for Masonry and
look through it, there's a few more steps to install this thing and they're precise.

Scroll down until you see the CSS Usage section:

lapplassets/stylesheets/application.css

*= require 'masonry/basic'

*= require 'masonry/centered'

*= require 'masonry/fluid'
*=require 'masonry/gutters’

*= require 'masonry/infinitescroll'
*= require 'masonry/right-to-left'

O 00 N ON Ul i W IN -

*= require 'masonry/transitions'

175

John Elder

10 *=require_self
11 *=require_tree .
12 %/

13

These app/assets/ files look a little different than other files we've played with so
far. Take a look at line 10 and line 11 above. Basically line 11 tells our app to add
all the files in this directory to our project, and line 10 tells our app to add this file
to the project. So when we add things to that file, I like to put them above those
two lines.

Let's look at all the things we just added (lines 3-9). Those are all the different
things that Masonry will do. Notice the infinitescroll thing? You've probably seen
that on websites before...

But actually, we don't need all of those things, we only need the transitions one.
So let's update the file:

lapplassets/stylesheets/application.css

*= require 'masonry/transitions'
*= require_self
*=require_tree .

¥/

NN O U W DN -

Looking through the Masonry documentation, we'll see that we also need to add a
couple of lines to our Javascript manifest file as well:

176

Codemy.com

lapplassets/javascripts/application.js

//= require jquery

/I= require jquery.turbolinks

//= require jquery_ujs

//= require turbolinks

//= require bootstrap-sprockets

//= require bootstrap

//= require masonry/jquery.masonry
10 //=require_tree .

O 0 I O Ul b= W N -

It's important to add the jquery.turbolinks reference directly below the jquery
reference, otherwise things can get wonky and might not work.

Finally, we need to add a bit of CoffeeScript to our pins.js.coffee file:

lapplassets/javascripts/pins.js.coffee
Place all the behaviors and hooks related to the matching controller here.
All this logic will automatically be available in application.js.
You can use CoffeeScript in this file: http://coffeescript.org/
$->
$('#pins').imagesLoaded ->
$('#pins').masonry
itemSelector: ".box'
isFitWidth: true

O 0 NI O O = W N -

Finally, we've got to add a little bit of custom CSS to our CSS file:

177

John Elder

lapplassets/stylesheets/pins.css.scss
// Place all the styles related to the pins controller here.
// They will automatically be included in application.css.
// You can use Sass (SCSS) here: http://sass-lang.com/

1

2

3

4

5 #pins {

6 margin: 0 auto;
7}

8

9 .box {

10 margin: 5px;
11 width: 214px;
12 }

13

14 .boximg {

15 width: 100%;
16 }

17

Strictly speaking, we could probably add that bit of CSS to our bootstraply.css.scss
file, but since this code is going to style our pins, I put it in our pins.css.scss file.

That should take care of the setup for this thing, but now we need to configure our
pins index page to actually use Masonry, and if you scroll down through the
Masonry documentation, you'll see a section on 'Setup' that shows you how to call
the divs and classes on your web page.

178

Codemy.com

lapplviews/pins/index.html.erb
1 <div id="pins" class="transitions-enabled">

N

<% @pins.each do I pin| %>
<div class="box">
<div class="panel panel-default">
<%=link_to image_tag(pin.image.url(:medium)), pin %>

3

4

5

6 <div class="panel-body">
7 <%= pin.description %>
8

9

</div>
10 <div class="panel-footer">
11 <% if pin.user == current_user %>
12 <%= link_to 'Edit’, edit_pin_path(pin) %>
13 <%= link_to 'Destroy’, pin, method: :delete, data: { confirm: 'Are you
14 sure?' } %>
15 <% end %>
16 </div>
17 <% end %>
18
19 <%=link_to 'New Pin', new_pin_path %>
20 </div>
21 </div>
22 </div>
23

Basically all we're doing is (line 1) wrapping the entire page in a div with
ID="pins" (which corresponds with the css we just added to our pins.css.scss file
and as well as our pins.js.coffee file) and class=" transitions-enabled" (which tells
masonry to do its transitions thing).

We're also (line 3) wrapping each individual pin in a div with class="boxy" which
also corresponds with the css we just added to our pins.css.scss file as well as our
pins.js.coffee file.

179

John Elder

So if we restart our server and check out our website, our pins index page should
scroll horizontally. And if we resize the screen, the pins should move about and
resize with a cool animated transition effect.

€« C' @ https://pinterested-codemy.c9.io/pins

D
n

Pinterested Home About Me List Pins Add Pin Edit Profile Logout

N And one more pin for good
This is a pin! This is what I would call our This is our third pin! measure

Edit second pin Edit Edit
Destroy Edit Destroy Destroy

Destroy

(Pins Index Page With Masonry Installed)

Now we can do the final step to make our pins look more like real Pinterest pins,
and I think it's a perfect job for Bootstrap Panels:

180

Codemy.com

lapplviews/pins/index.html.erb
1 <divid="pins" class="transitions-enabled">
2 <% @pins.each do |pin| %>

3 <div class="box">

4 <div class="panel panel-default">

5 <%= link_to image_tag(pin.image.url(:medium)), pin %>

6 <div class="panel-body">

7 <%= pin.description %>

8 </div>

9 <% if pin.user == current_user %>

10 <div class="panel-footer">

11 <%= link_to 'Edit', edit_pin_path(pin) %>

12 <%= link_to 'Destroy’, pin, method: :delete, data: { confirm: 'Are you
13 sure?' } %>

14 </div>

15 <% end %>

16 </div>

17 </div>

18 <% end %>

19 </div>

20

You'll notice that I took out the link to "Add A New Pin" because we've got a link
to that at the top of every page on the Navbar. Check it out:

181

John Elder

€ - C' { httpsy//pinterested-codemy.c9.io/pins

Pinterested Home AboutMe ListPins AddPin EditProfile Logout

And one more pin for good

This is a pin! This is what | would call our This is our third pin! measure
second pin

Edit Edit Edit

Destroy Edit Destroy Destroy
Destroy

(Pins Index Page With Panels)

You'll also notice that we've placed the "Edit" and "Destroy" links in a panel-footer
that only shows up if a user is logged in and if they are the one who posted that
specific pin. So if we log out and view the pins page, it will look like this:

€ = C' https/pinterested-codemy.c9.io/pins

Pinterested Home AboutMe ListPins Login Join

And one more pin for good
This is a pin! This is what | would call our This is our third pin! measure
second pin

(Pins Index Page Not Logged In — No Panel Footer Links)
182

Codemy.com

Basically at this point we can play around with the look and feel of these pins any
way we like. I'll leave it to you to put your own spin on the final layout of your
own app — have some fun with it!

TWEAKING PINS SHOW PAGE

Our pins index page looks pretty good, now let's edit our pins show page to look
better:

lapplviews/pins/show.html.erb

1

2 <div class="row">

3 <div class="col-md-offset-2 col-md-8">

4

5 <div class="panel panel-default">

6 <div class="panel-heading center"><%= image_tag @pin.image.url(:medium) %></div>
7 <div class="panel-body">

8

9 <%= @pin.description %>

10

11 <% if @pin.user == current_user %>

12 <%= link_to 'Edit’, edit_pin_path(@pin) %> |
13 <% end %>

14 <%= link_to 'Back’, pins_path %>

15 </div>

16 </div>

17 </div>

18 </div>

19

The first thing I did was remove line one:

183

John Elder

1 <p id="notice"><%= notice %></p>
2

I did that because we tweaked our pins controller a while back to output a flash
message itself, so that line would result in two flash messages being shown at once
and that's not cool.

Next, I wrapped the whole thing in a row div class because Bootstrap likes that,
then I added line 3 to center things. Then I just wrapped the whole thing in a panel

like we've done so many times in the past.

The layout is pretty simple, but gets the job done and I think we can call that done.

&« C' | { https;//pinterested-codemy.c9.io/pins/10 Z

Pinterested Home About Me List Pins Login Join

And one more pin for good measure
Back

(Pins Show Page — Centered With Panels)

184

Codemy.com

MAKING OUR SITE MOBILE FRIENDLY

These days your website has to be mobile friendly. Luckily for us, Bootstrap has
taken care of all that for us. The only thing we have to do is add one single line to
our layouts/application.html.erb file to tell the web browser that our site is mobile
ready:

lapplviews/layouts/application.html.erb
<IDOCTYPE html>
<html>
<head>

<title>Pinterested</title>

1
2
3
4
5 <%= stylesheet_link_tag 'application’, media: 'all’, 'data-turbolinks-track' => true %>
6 <%=javascript_include_tag 'application’, 'data-turbolinks-track' => true %>

7 <%= csrf_meta_tags %>

8 <meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=1">
9

10 </head>

11 <body>

12 .

13

Line 8 is all we need to add to make our site mobile friendly. Now if you check
out the site on a smart phone, you'll see that standard mobile dropdown menu at
the top of the screen, and the site will resize to the size of your phone's screen.

Line 8 is a standard line of code that should go on every website you ever build,
whether in Rails or otherwise.

185

John Elder

<« & https://pinterested-codemy.c9.io/pins 7 =

-

Pinterested

Home

About Me

List Pins

Login

Join

This is a pinl

(Mobile Friendly Menu Dropdown)

REORDERING OUR PINS

Things are coming along nicely, we're almost finished! But we still have one small
problem...and you may have noticed it yourself.

The pins on our pins index page are in the wrong order! Every time you add a
new pin, it gets placed at the bottom of the list. Imagine if hundreds or thousands
of pins were added. To see the newest one, you'd have to scroll down and down
and down and down to see it.

186

Codemy.com

We'd much rather have the newest pins listed at the very top of the page. Rails
makes that very easy, all we have to do is edit out pins controller file a bit:

lapp/controllers/pins_controller.rb
def index

@pins = Pin.all.order("created_at DESC")
end

O 3 O Ul = W IN -

We just slapped a ("created_at DESC") bit onto the end of our index controller.
DESC stands for Descending...as opposed to Ascending. That just tells Rails to
output our pins in descending order (newest to oldest).

That's all we have to do!

But it does beg the question...how many pins should we show on each page? We
don't really want our pins index page to list thousands and thousands of pins, do

we? Nope.

Instead, we should set some rules and break it up by only allowing so many pins
to be shown on a page...say 20, or 50, or whatever you like.

We can do this by adding pagination.

As always...there's a Gem for that (or in this case, two Gems).

187

John Elder

ADDING PAGINATION

We'll need two Gems to handle this, one to handle the actual Pagination, the other
to tie Bootstrap into our Pagination so that we can use the cool looking Bootstrap
Pagination classes.

/Gemfile

1.

2 .

3 gem 'will_paginate', '~>3.0.7'

4 gem 'will_paginate-bootstrap’, '~>1.0.1'
5

will_paginate handles the actual pagination stuff, and will_paginate-bootstrap ties
our pagination into Bootstrap.

I'll leave you to look up each Gem at RubyGems.org and read the documentation.
By now you should be pretty used to doing that.

To properly set up pagination, we need to make a couple of changes; one to our
pins controller, and one to our pins index page. Let's look at the controller first:

lapp/controllers/pins_controller.rb

def index
@pins = Pin.all.order("created_at DESC").paginate(:page => params[:pagel, :per_page => 3)

end

O G i WIN -

188

Codemy.com

You'll remember how we just edited this file to output our pins in Descending
order. Now we're tacking on a bit more to the end of that line. The only thing you
need to take notice of is the '3' at the end of line 4.

That's where you choose how many pins to show per page. In our case, I've
selected '3' because the pagination controls won't show up on the page unless there
are as many pins as you've listed. By selecting '3', it means that the pagination will
show up (since we have 4 pins and I'm too lazy to add more right now).

If this were a real commercial site that we intended to launch, I'd probably set it to
25 or 50.

Next we need to actually output our pagination onto the screen, so let's edit our
pins index page:

lapplviews/pins/index.html.erb
1

2 .

3 <%= will_paginate @posts %>
4

Just add that code to the very bottom of your pins index page. Be sure to restart
your server (since we added new Gems). Let's check it out:

189

John Elder

&7 |
[]]

L c Et https://pinterested-codemy.c9.io/pins 7

Pinterested Home About Me List Pins Add Pin Edit Profile Logout

And one more pin for good
measure

This is our third pin! This is what | would call our
second pin

Edit
Destroy

Edit
Destroy Edit
Destroy

« Previous 12 Next —

(Pins Index Page With Basic Pagination)

That's ok, but we'd rather style those pagination links better. Like I said, Bootstrap
offers a pagination class. Head over to GetBootstrap.com and click the
"Components" link, then the "Pagination" link to see the different options
available.

Let's edit our pagination to incorporate Bootstrap:

lapplviews/pins/index.html.erb

1

2

3 <%= will_paginate @pins, renderer: BootstrapPagination::Rails %>
4

Now reload the page and take a look:

190

Codemy.com

|

&r
1]

€« C' httpsy//pinterested-codemy.c.io/pins

Pinterested Home About Me ListPins Add Pin Edit Profile Logout

And one more pin for good
measure

This is our third pin! This is what | would call our
second pin

Edit
Destroy

Edit
Destroy Edit
Destroy

« Previous - 2 Next —

(Pins Index Page With Bootstraped Pagination)
Much better! But we should probably center the pagination in the middle of the
screen. Let's add a center class to our bootstraply.css.scss file:
lapplassets/stylesheets/bootstraply.css.scss
@import "bootstrap-sprockets";
@import "bootstrap";

.center {
text-align: center;

}

O 00 N O O b W IN -

Be sure to put our center class code UNDER the @import lines. Now we need to
call that center class on our pins index page:

191

John Elder

lapplviews/pins/index.html.erb

1
2

3 <div class="center>

4

6

<%= will_paginate @pins, renderer: BootstrapPagination::Rails %>
5 </div>

Reload the page and it should look like this...

&«

C' | { https//pinterested-codemy.c9.io/pins

Pinterested

And one more pin for good
measure

Edit
Destroy

Home

This is our third pin!

Edit
Destroy

«— Previous 2 | Next—

About Me List Pins

This is what | would call our
second pin

Edit
Destroy

Add Pin

Edit Profile

Logout

A

192

(Pins Index Page With Centered Bootstrap Pagination)

Codemy.com

MAKING OUR PINS INDEX PAGE OUR HOMEPAGE

So this is great! Our pins index page looks like Pinterest, we've got pagination, and
everything seems to be going our way.

Now it's time to make our pins index page our main homepage. Whenever
someone comes to https://pinterested-codemy.c9.io (or whatever your URL is), we
want our pins index page to be shown, not the homepage that we currently have
(the one with the jumbotron).

If you like the jumbotron, you can always add it to your pins index page (maybe
use a partial) and just use an IF statement to only show the jumbotron if a person

is not logged in. But I'll leave that to you.

Right now I'm just going to make our pins index page our main homepage by
changing the route.

/config/routes.rb

root 'pins#index’

N Ul = W N -

All T did here was change our old root route from root 'home#index' to root
'pins#index'.

Now when someone goes to our site, the pins index page is the one they'll see.

Now let's save our work and push it up to Heroku.

193

John Elder

$ gitadd .

$ git commit —am 'added masonry, pagination, and made pins our index page'
$ git push

$ git push heroku master

Ol = W N =

ADDING USER NAMES

Let's do one more thing before we end this project; let's tweak our entire project to
allow people to add their names to their pins. This will allow us to pull a bunch of
different things that we've learned together.

*WARNING WARNING WARNING WARNING**

Before we proceed, you need to delete all the pins that you've added so far, both
on your development site as well as on Heroku. I know, it's a pain in the ass, but
we're going to be tinkering with the database so just do it this one last time. You
should also cancel your user account again just to be on the safe side.

We're going to need to tinker with our Users database table; right now it only
records a user's email address and password, and we need to add a column to
record their name as well. No problem, we've done that before when we added the
user_id column to our pins table.

1 $ rails generate migration AddNameToUsers name:string
2

This is the command to add a "Name" column to our "Users" table. It looks a little
different than the one we used earlier to add a User_ID column:
194

Codemy.com

1 $ rails generate migration add_user_id_to_pins user_id:integer:index
2

In that command we used the underscore convention add_user_id_to_pins and in
the command we just used to add Name, we used the camel case style of
AddNameToUsers.

Either method works in Rails, and I wanted to point them both out to you — they
both do the same thing.

Finally, notice that we designated 'name' to be a string data type.

Now we need to run our rake db:migrate command to push our new migration
into the database (and be sure to run heroku run rake db:migrate later when you
push all this up to Heroku):

1 rake db:migrate

2

Take a look at your database schema now, you should see a Name field in the
Users table and it should be listed as a string.

Piece of cake! But now we need to update a couple of files so that people can

actually type in their name when they sign up, and edit their name after they've
signed up when they edit their user profile.

195

John Elder

lapplviews/devise/registrations/new.html.erb

<div class="form-group">

<%= f.label :name %>

<%= f.text_field :name, class: "form-control", :autofocus => true %>
</div>

O 3 O Ul = WN -

lapplviews/devise/registrations/edit.html.erb

<div class="form-group">

<%= f.label :name %>

<%= f.text_field :name, class: "form-control", :autofocus => true %>
</div>

O I O Ul = W N

This will add a form field and label to the new registration page so that people can
add their name when they register, and also let people edit their name when they
edit their user profile.

196

Codemy.com

&« C' [nttpsy/pinterested-codemy.c9.io/users/sign_up o =

Pinterested Home About Me List Pins Login Join
Sign up
Name
Email

Password (8 characters minimuim)

Log in

(https://pinterested-codemy.c9.io/users/sign_up With Name Field)

But we need to tell Rails that it's ok to accept a name from a web form, and we do
that in the application controller.

lapp/controllers/application_controller.rb

1 class ApplicationController < ActionController::Base

2 # Prevent CSRF attacks by raising an exception.

3 # For APIs, you may want to use :null_session instead.

4 protect_from_forgery with: :exception

5 before_filter :configure_permitted_parameters, if: :devise_controller?
6

7

8

9

protected

def configure_permitted_parameters
10 devise_parameter_sanitizer.for(:sign_up) << :name
11 devise_parameter_sanitizer.for(:account_update) << :name
12 end
13 end
14

197

John Elder

And we also need to make a reference in our pin_params section of our pins
controller:

lapp/controllers/pins_controller.rb

1.

2 def pin_params

3 params.require(:pin).permit(:description, :image, :name)
4 end

5.

6 .

Just add that :name to the end of line 3. You'll see that this line already references
description, and images...now we added name.

Now we just need to output each person's name under their particular pin in our
pins index page and our pins show page:
lapplviews/pins/index.html.erb

1.

2 .

3 <%= link_to image_tag(pin.image.url(:medium)), pin %>

4 <div class="panel-body">

5 <%= pin.description %>

6
<%-= pin.user.name if pin.user %>

7 </div>

8

And finally, let's update our pins show page to list the user's name as well:

198

Codemy.com

lapplviews/pins/show.html.erb

<%= @pin.description %>

<%= @pin.user.name %>

NN O Ul b= QWO N =

Just add the reference to the name under the pin.description line and you should
be good to go!

Now let's save our work:

$ gitadd .

$ git commit —am 'added user name, updated devise forms'
$ git push

$ git push heroku master

$ heroku run rake db:migrate

N Ul = W N -

And that's all there is to it! That wasn't so bad.

199

John Elder

€« C' | { https;//pinterested-codemy.c9.io

g
n

Pinterested Home About Me ListPins Add Pin Edit Profile Logout

And a fourth pin for good

This is my fifth pin! measure! It's hard to believe we've got This is our second pin - |
three whole pins now! Like itlt

John Elder John Elder
John Elder John Elder

Edit Edit

Destroy Destroy Edit Edit
Destroy Destroy

« Previous 2 | Next—

(https://pinterested-codemy.c9.io Index Page With User Names Added to Pins)

I think we're pretty much done with our app! All the major functionality exists, in
the next chapter we'll make a few cosmetic changes to make the colors and
whatnot look more like Pinterest...but for all intents and purposes — our site is
done!

Congratulations on making it this far! You've accomplished something pretty

incredible in a fairly short amount of time! Take a moment to appreciate it and
we'll move along in the next chapter.

200

Codemy.com

CHAPTER NINE

TWEAKING THE LOOK AND FEEL AND FINISHING UP

Our app is basically done, but we can play around with the look and feel a little bit
to make it feel a little more pinteresty.

We talked about customizing bootstrap earlier in the book. Head over to
GetBootstrap.com and click the "Customize" link to search through the different
variables that you can play with.

There are really only a few minor changes I'd like to make.

First, I'd like to make the general theme color red, like at Pinterest. So I'd like the
links on the site to be red; I'd like the buttons of the site to be red; and I'd like the
title text on the Navbar to be red.

Specifically, I'd like to use this color of red: #cb2027;

Searching through the bootstrap customization variables, I see that links are
controlled by:

1 $link-color: #cb2027;
2
And to change the title color of the Navbar to red we need:

1 $navbar-default-brand-color: #cb2027;
2

201

John Elder

And finally, to change the colors of our buttons, we need to tweak the "primary"
button color using this variable:

1 $brand-primary: #cb2027;
2

Next, I'd like to swap out the background color of our site and the Navbar
background color.

I'd like our site's basic background color to be a light grey in color, and I'd like the
Navbar to be white.

1 $body-bg: #e9e9e9;

2 $navbar-default-bg: #ffffff;
3

What else can we tinker with? How about the color of the pagination thing at the
bottom of the screen; let's highlight that with the same red color:

1 $pagination-active-bg: #cb2027;

2 $pagination-active-border: #cb2027;

3

Let's see...why don't we tinker with the Navbar height and make it a little shorter:
1 $navbar-height: 40px;

2

Looking good! Now let's put all of these together on our bootstraply.css.scss file:

202

lapplassets/stylesheets/bootstraply.css.scss
$navbar-default-bg: #ffffff;
$navbar-height: 40px;

$body-bg: #e9e9e9;
$navbar-default-brand-color: #cb2027;
$link-color: #cb2027;
$pagination-active-bg: #cb2027;
$pagination-active-border: #cb2027;
$brand-primary: #cb2027;

O 0 NI O UG = W IN P

—_
(@)

@import "bootstrap-sprockets";
@import "bootstrap";

U U Y
W N =

.center {
text-align: center;

_
Q1

}

—_
(@)

Codemy.com

And I think we'll call this thing finished! Remember to put the variables ABOVE
the @import lines in the CSS file, and the actual CSS (like our center class) BELOW

the @import lines.
Let's save our work one last time!

$ git add .

$ git commit —am 'tweaked bootstrap ui'
$ git push

$ git push heroku master

Ol = W N

203

John Elder

ADDING A CUSTOM URL

So our app is done, now let's add a custom URL to our heroku production app.
We don't really want people coming to oursite.herokuapp.com when it could just
as easily be oursite.com or custom.oursite.com

Creating a custom URL is pretty easy. If you don't have a domain name, purchase
one at any domain registrar like godaddy.com or namecheap.com (either of those
is good; domain names tend to cost around $10 bucks a year).

You have a couple of options, you can either point an actual domain name to your
new Rails app, or you can point a sub-domain.

SUB-DOMAINS

I'll start out with a Sub-Domain because it's the easiest to explain. For our app, I
want to use the sub-domain http://rails.codemy.com

So when someone goes to rails.codemy.com, I want our app to show up.

Easy as can be!

Just head over to Heroku, log in, then click on your app. On the screen that pops
up, click the "Settings" link at the top of the screen.

Scroll down the screen and you'll see a section titled "Domains", click the "Edit"
button in the Domains section.

A little form field should pop up where you can enter your sub-domain (or regular
domain). So let's enter our:

204

Codemy.com

rails.codemy.com
Click the little green plus sign after you type it in, then click the "Save" button.

What we've just done is tell Heroku that you'll be using rails.codemy.com as your
apps URL. They just need a heads up.

Next, you'll need to log into your web host or domain registrar and create a
CName that points to your heroku app URL (yourURL.herokuapp.com).

Every webhost and domain name registrar is different, so I can't really tell you

how to do this step. You'll have to contact the support department of your specific
host and ask them how to add a CName. It's usually pretty straight forward.

ADDING A CUSTOM DOMAIN

So that was how to add a sub-domain (rails.codemy.com) but how do you point a
regular domain towards your app (like yoursite.com)??

It's the exact same process as before; log into Heroku, click "Settings" navigate
down to the "Domains" section, and add your domain. But instead of typing in

whatever.yoursite.com just type in yoursite.com

Note, you can't point www.yoursite.com to your app, it has to be yoursite.com
(without the www).

Then like before, you need to contact your domain registrar and ask them how to
add a CName to your domain. They'll tell you. Point that CName to your heroku
URL (yourURL.herokuapp.com).

Heroku has an article about it that you can read if you're confused:

205

John Elder

https://devcenter.heroku.com/articles/custom-domains

That's that!

206

Codemy.com

CHAPTER TEN

CONCLUSION

You made it! We're done! Our app is finished, there's nothing left to do. I hope
you enjoyed this book and got a lot out of it.

As cheesy as it may sound, I also hope you discovered a joy for Rails. It really is a
great tool for building very professional websites, very quickly and easily. Think
about our own app...

When you get right down to it, there wasn't more than a couple of hours of work
involved in building this thing.

Sure it probably took longer than a couple hours the first time through while you
were reading the book and learning...but the actual steps involved (once you
learned them), didn't take much actual time to accomplish.

And we've got a pretty impressive site. People can sign up, sign in, sign out,
update their profiles, add pins (CRUD!) and Rails handles all of that stuff behind
the scenes for us.

That's a pretty professional set of functions and it was really pretty easy to do.
That's the power of Rails.

You've taken a huge first step in Learning Rails, but there's so much more to learn.
I hope you'll keep at it!

I also recommend that you head over to Codemy.com and check out some of my

other Rails courses. I build all kinds of different sites in the different courses, and
they're all a lot of fun.

207

John Elder

You can take individual courses at Codemy.com for $39 each, or you can sign up
for all the courses listed (and all future courses that we release) for just $99.

If you sign up today for all the courses, I'll give you a coupon code worth $20
off...you pay just $79...which is a tremendous deal. Watch over my shoulder as I
build all kinds of sites in Rails (and other programming languages too) and talk
you through it all step by step.

Just use coupon code rails101 at checkout to get the special $79 price tag.

See you there!

-John Elder
Codemy.com

208

Codemy.com

APPENDIX A

SPECIAL CODEMY.COM OFFER

Learning never stops, especially for coders. There's always something new and
cool to learn. I've tried to build a website that makes it super easy to learn how to
code, and learn new coding skills...and it's called Codemy.com

Each course at Codemy.com is a series of videos where you watch over my

shoulder as I build something cool (like this pinterested project we just created in
this book).

In one course I build a Twitter-like site where people can post anonymous secrets.
In other course I build a social network for people looking to start bands. In
another course I build an affiliate marketing site that makes money from Amazon
affiliate products.

I teach Rails courses, PHP courses, HTML and CSS courses, and more.

Each course costs $97, or you can sign up for all the courses for $497 (which is a

pretty good deal if you ask me!) and that entitles you to all the future courses that
we add absolutely free (and we've got some cool courses on the horizon).

AS A SPECIAL THANK YOU FOR READING THIS BOOK...

I'd love to see you over at Codemy.com and I'd like to bribe you to join today; so
I'm giving you a special coupon code (amazon) that will give you $22 off my Ruby
on Rails For Web Development course (so you pay $75 instead of $97)...

It's my gift to you! http://www.Codemy.com/rails/

209

http://www.codemy.com/rails/

John Elder

So you get access to my best-selling course and for just $75 instead of the regular
$97.

And we offer a two month-long 100% money back guarantee. Check out the

course, if it isn't for you...just shoot me a message and I'll immediately refund
your money, no questions asked, no hoops to jump through.

HANDS ON HELP

Membership doesn't just get you videos...you also get hands on help from me and
other members. Any time you get stuck with something, you can post a question
to me directly, or post a question in our members forum.

It's a great resource and I hope you'll take advantage of it.

Just use coupon code amazon at checkout for $22 off my Ruby on Rails For Web
Development course http://www.Codemy.com/rails/

See you on the inside!

-John Elder
Codemy.com

210

http://www.codemy.com/rails/

Codemy.com

THE END

211

John Elder

NOTES

212

Codemy.com

NOTES

213

John Elder

NOTES

Copyright © John Elder & Codemy.com - All Rights Reserved
214

